首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
沉积温度对ZnO薄膜结构及发光性能的影响   总被引:1,自引:0,他引:1  
利用Nd-YAG激光器(波长为1064nm,频率为10Hz)做光源,采用纯金属锌靶,以Si(111)为基体在有氧的气氛中通过激光烧蚀锌靶表面来制备氧化锌薄膜,研究基体温度对ZnO薄膜结构及发光性能的影响.通过XRD和AFM原子力显微镜来表征氧化锌薄膜的结构和表面形貌,其光学性质由光致发光谱来表征.结果表明:在450-550 ℃的条件下沉积的ZnO薄膜具有c-轴择优取向,500℃时c-轴取向最明显.具有c-轴取向的ZnO薄膜具有强的紫外光发射和弱的绿光发射,发光中心在518nm处的黄绿光发射主要归因于电子从导带底部到氧位错缺陷OZn能级之间的跃迁.  相似文献   

2.
利用正交设计试验探讨了基体温度、偏压、溅射时间、沉积时间对ZL109表面沉积TiN涂层时,对薄膜显微硬度和膜/基结合力的影响.结果表明,在ZL109表面多弧离子镀制备TiN薄膜的最佳工艺为:基体温度260 ℃、偏压200 V、沉积时间30 min、溅射时间8 min、Ti靶电流80 A、炉内总压1 Pa(Ar和N_2流量比为1∶2).在此工艺下制备的TiN薄膜显微硬度达到1500 HV0.05,膜/基结合力达到36 N,膜厚约2~3 μm.  相似文献   

3.
在室温下利用脉冲激光沉积法,以石英玻璃为基体成功制备了具有优良光改发光特性的铝掺杂氧化锌晶体薄膜(AZO),激光烧蚀所用的靶材采用自制的合金靶(Zn∶Al 3%,质量分数,下同),沉积过程中保持固定的氧压(10 Pa)和不同的激光能量密度,薄膜结构以XRD表征,铝掺杂氧化锌薄膜的室温PL谱表明,紫外发光中心在359~361 nm.  相似文献   

4.
采用355nm脉冲激光沉积(PLD)技术,以Li6.16V0.61Si0.39O5.36为靶材制备Li2O-V2O5-SiO2薄膜,考察了反应气氛压强、激光能量密度、基片温度等对薄膜结构和性质的影响.结果表明,随着基片温度升高及激光能量密度增大Li2O-V2O5-SiO2薄膜更致密,且室温离子电导率随之增大.在O2压强6.7Pa、激光能量密度12J/cm2和基片温度300℃条件下制备了室温离子电导率为4×10-7S/cm、离子迁移数接近1.O(tion>99.99%)、厚度均匀、无针孔和裂缝的非晶态Li2O-V2O5-SiO3薄膜.  相似文献   

5.
研究了TP304H钢表面电沉积CeO2薄膜在610-770℃水蒸气中的氧化行为的变化.结果表明,沉积CeO2薄膜可有效减缓氧化速度.SEM和EDX分析显示,氧化膜表面形貌由多层结构转化为单层,Cr元素扩散进入CeO2膜层而形成Cr-Ce复合氧化物膜层.表面形成的氧化膜中Cr浓度显著提高,CeO2膜处于外层氧化膜与基体之间,内氧化消失.根据CeO2特性和试验结果,由于CeO2中Ce离子具有处于富氧/贫氧环境中具有Ce^4+/Ce^3+两价和高氧空位浓度特性,认为沉积CeO2薄膜对氧向内扩散具有一定的阻挡作用,限制了CeO2薄膜/基体界面处的氧分压,使得Cr优先扩散穿过CeO2薄膜在CeO2薄膜/气体界面处氧化,从而推迟了Fe氧化物形成的时间.  相似文献   

6.
利用脉冲激光沉积(PLD)技术,在Si(100)衬底上制得了导电氧化铱(IrO2)薄膜.讨论了沉积参数(O2分压、衬底温度)对IrO2薄膜的结构、表面形貌和导电性的影响.结果表明20 Pa为最佳O2分压、400℃~500℃为适宜的沉积温度,此条件下制得的IrO2薄膜结晶完整,组织均匀、形状一致,排列致密,其最低电阻率约为42μΩ·cm.  相似文献   

7.
采用直流反应磁控溅射方法在AISI 304不锈钢和Si(100)表面沉积了TiN薄膜,利用场发射扫描电镜、X射线衍射仪和电化学技术研究了基体温度对TiN薄膜结构与电化学性能的影响。结果表明:TiN薄膜为柱状结构,表面平整、致密,但基体温度高于300℃时膜表面存在微裂纹。薄膜为面心立方结构δ-TiN并存在择优取向,室温和150℃时的薄膜择优取向为(111)晶面,300℃和450℃时为(200)晶面;基体为室温时薄膜厚度为0.63μm,温度提高到150℃后膜厚增加到1μm左右,但继续升温对膜厚影响并不明显。薄膜在NaCl溶液中的腐蚀为点蚀,基体温度为150℃时的TiN薄膜具有最高的开路电位和点蚀电位以及最低的腐蚀速率,因此具有最佳的耐蚀性。  相似文献   

8.
磁控溅射法制备PZT基SMA/PZT异质复合材料   总被引:1,自引:0,他引:1  
采用直流磁控溅射法在PZT基体上溅射沉积NiTiSMA薄膜,而制备出PZT基NiTii SMA/PZT异质复合材料.研究了溅射工艺参数与晶化温度对NiTi SMA薄膜相组成及SMA/PZT异质复合材料膜/基间结合状态的影响规律.结果表明,为保障NiTi SMA薄膜的晶体颗粒均匀、结构致密,膜/基间成分交换范围小及结合紧密,制各NiTi SMA/PZT异质复合材料的适宜工艺为:于基体温度150℃、氩气压强0.7 Pa条件下溅射沉积NiTi SMA薄膜,再经600℃二次晶化处理.显微观察发现,NiTi SMA薄膜与PZT基体之间以化学方式,而非物理方式结合.  相似文献   

9.
目的提高镁合金表面硬度及耐磨性,给出最佳性能薄膜的制备温度。方法采用化学气相沉积(PECVD)技术在AZ31镁合金表面制备了含氢DLC薄膜,研究了沉积温度对DLC薄膜厚度、表面形貌、硬度、杨氏模量、耐磨性能、膜基结合力以及sp^3键含量的影响,并对相应的影响机制进行了讨论。结果沉积温度对AZ31镁合金表面DLC膜的组织及性能有显著影响。温度较低时,碳粒子能量较低,无法注入薄膜亚表层,只能停留在表面以sp^2杂化方式生长。随着温度的升高,碳粒子能量增加,更多的sp^3杂化键形成。沉积温度为75℃时,薄膜中sp^3杂化键含量最多,此时薄膜最厚约为7.67μm,硬度最大可达5.95 GPa,杨氏模量值最高达到43.2 GPa,并且摩擦系数最低仅为0.03。随着温度进一步升高,碳粒子能量持续增加,轰击薄膜表面时会使碳-氢键断裂,造成氢的脱附,使薄膜中sp^3杂化键减少,从而降低了薄膜的硬度及耐磨性等机械性能。结论在本研究工作温度范围内,75℃为AZ31镁合金表面制备DLC薄膜的最佳温度。  相似文献   

10.
采用热丝化学气相沉积法在硬质合金基体表面沉积一层硼掺杂金刚石(BDD)薄膜,沉积温度为450~850℃。研究沉积温度对硬质合金基体表面硼掺杂金刚石涂层性能的影响。研究结果表明,硼掺杂明显有助于提高金刚石涂层的生长速率。当沉积温度为650℃时,BDD薄膜在硬质合金基体表面的生长速率可达到544 nm/h。这可能是由于反应气体的硼原子降低了薄膜生长的激活能(53.1 k J/mol),从而加快了沉积化学反应速度。此外,拉曼光谱和X射线衍射结果显示,高浓度硼掺杂(750和850℃)会破坏金刚石的晶格结构,从而使薄膜内缺陷增加。综上,硬质合金基体表面BDD薄膜的优选沉积温度范围为600~700℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号