首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
采用狭缝光束分析仪和偏振仪测量了从铝薄膜表面反射的圆偏振光的光斑位置和偏振特性随外界直流电压变化情况,理论拟合激光从铝薄膜反射后的光斑位置与直流电流电压的关系。测量和多项式拟合结果表明,当外部电压值从0变化到2.5V时,圆偏振激光在x轴和y轴上的位置分别是从-45μm移动到-95μm,从35μm移动到75μm,而激光束的光学偏振度基本上不变化。  相似文献   

2.
针对激光外差干涉仪测量过程中测量镜随被测对象旋转而导致的位移测量误差,提出了一种基于卡尔曼滤波的激光外差干涉位移测量补偿方法。根据测量镜转角和测量光束光斑位置变化对应关系,利用位置敏感探测器(PSD)和位置电压信号卡尔曼滤波方法测得降噪后的光斑位置变化,从而获得更为准确的转角测量结果,最后根据转角与位移的解耦数学模型利用测得的转角进行位移补偿。为验证滤波算法和位移补偿方法的可行性和有效性,搭建激光外差干涉测量实验装置,分别进行光斑位置稳定性测量实验、角度测量验证实验和激光外差干涉位移测量补偿实验。实验结果表明:经卡尔曼滤波降噪后系统装置测得的光斑位置抖动标准差从0.52μm降至0.18μm,测量的转角与索雷博六自由度转台的转角偏差在±1.38×10-4°内,对M-531. DD线性导轨200 mm量程内的位移和转角进行测量,将测得的转角进行位移补偿后,系统的位移测量结果与M-531. DD线性导轨位移的标准差从1.55μm减小到0.29μm。  相似文献   

3.
在由激光位移传感器组成的测量系统中,激光光束的方向是一个关键参数。方位角和俯仰角对于一条激光光束是最为重要的两个参数。本文中提出一种基于单目视觉的激光光束方向测量方法。首先,将CCD相机放置于基础平面上方,保持相机光轴与基础平面接近于垂直状态,并利用误差为10μm的圆孔型标定板建立单目定位模型。然后将激光光束发生装置放置在基础平面上并保持位置固定,同时在基础平面上放置特制靶块,使激光光束可以投射到靶块斜面上并形成一个激光光斑。在基础平面上方放置的CCD相机可以清晰的采集到激光光斑、靶块斜面的图像,应用相关算法提取出光斑质心的二维图像坐标。沿激光光束方向以相等间距移动靶块,通过CCD相机采集每移动一次靶块在当前位置下的光斑、靶块图像。利用相关的转换公式,结合靶块本身固有参数,将光斑质心图像二维坐标转换为基础平面下的空间三维坐标。由于靶块的移动,会得到靶块不同位置下激光光斑质心的三维坐标,将这些三维坐标拟合成空间直线表征待测激光光束。拟合直线得俯仰角即为待测激光光束的俯仰角。实验中,应用高精度仪器对靶块参数进行测定,并使用高精度标定板标定相机内外参数建立相应的定位模型。测量精度主要通过单目视觉定位精度、光斑重心提取精度来保证。结果显示,待测光束的俯角最大误差达到0.02°,光束间夹角的最大误差为0.04°。  相似文献   

4.
在由激光位移传感器组成的测量系统中,激光光束的方向是一个关键参数.方位角和俯仰角对于一条激光光束是最为重要的两个参数.本文中提出一种基于单目视觉的激光光束方向测量方法.首先,将CCD相机放置于基础平面上方,保持相机光轴与基础平面接近于垂直状态,并利用误差为10μm的圆孔型标定板建立单目定位模型.然后将激光光束发生装置放置在基础平面上并保持位置固定,同时在基础平面上放置特制靶块,使激光光束可以投射到靶块斜面上并形成一个激光光斑.在基础平面上方放置的CCD相机可以清晰的采集到激光光斑、靶块斜面的图像,应用相关算法提取出光斑质心的二维图像坐标.沿激光光束方向以相等间距移动靶块,通过CCD相机采集每移动一次靶块在当前位置下的光斑、靶块图像.利用相关的转换公式,结合靶块本身固有参数,将光斑质心图像二维坐标转换为基础平面下的空间三维坐标.由于靶块的移动,会得到靶块不同位置下激光光斑质心的三维坐标,将这些三维坐标拟合成空间直线表征待测激光光束.拟合直线得俯仰角即为待测激光光束的俯仰角.实验中,应用高精度仪器对靶块参数进行测定,并使用高精度标定板标定相机内外参数建立相应的定位模型.测量精度主要通过单目视觉定位精度、光斑重心提取精度来保证.结果显示,待测光束的俯角最大误差达到0.02°,光束间夹角的最大误差为0.04°.  相似文献   

5.
提出了一种基于MATLAB的激光光斑图像处理仿真算法.在MATLAB环境下,首先对采集到的光斑图像进行平滑滤波、亮度调节、阈值分割和边缘检测等图像处理,确定出光斑区域并得到边缘点的位置信息,再根据最小二乘法进行圆拟合进而计算得到光斑中心点的坐标.仿真结果表明,该算法能够快速、准确地得到光斑中心位置点,且达到很高的测量精...  相似文献   

6.
介绍了一种基于二维位置敏感探测器PSD的激光光斑位置测量系统。与传统的方法相比,该系统改进了硬件和软件设计方法来实现PSD外围信号处理,它可以测量微米级位置的移动,实验结果表明系统测量精度在5μ之内。  相似文献   

7.
为了实现滚珠螺母型面的快速精确测量,提出了激光测量方法并设计测量装置。首先,基于经直角棱镜反射的点激光轴向扫描的测量原理设计了螺母滚道型面检测装置,并根据滚道的数学模型提出轴法向转换的数据处理方法。然后,对直角棱镜的平移和转角误差、激光偏移误差、激光倾斜误差建立模型进行分析。最后,设计工装对标准钢球和圆槽进行扫描,并对螺母滚道开展实际测量。结果显示,完成误差标定后,经棱镜反射的点激光扫描圆弧轮廓的测量误差在3.1μm以内,标准差在2.2μm以内。对螺母滚道的扫描图像完整有效,总体精度满足螺母滚道型面的测量要求。  相似文献   

8.
激光光斑位置精确测量系统   总被引:5,自引:1,他引:5  
设计了一种激光光斑位置测量系统,用于提高激光照射器监测系统测量激光光斑位置时的测量精度.分别介绍了测量系统的组成及它们的信号连接关系.针对激光光斑图像采集过程中的后向散射现象,提出基于异步距离选通的激光后向散射抑制技术.为了克服大气湍流扰动对激光光斑成像的影响,利用改进的盲解卷积算法对激光光斑图像进行事后图像处理.最后,对光斑图像进行畸变校正,并利用高斯曲面拟合算法提取光斑位置.设计了若干仿真实验,并应用该系统处理了实际外场实验.结果表明,所设计的激光光斑位置测量系统的测量精度不超过0.3 pixel.  相似文献   

9.
马群  武志超 《工具技术》2019,53(1):136-139
研究了大型轴系轴心的激光旋转测量方法,利用CCD相机采集激光光斑图像,通过数值拟合算法计算激光光斑所形成圆周的圆心位置,用以测量轴系轴心的空间位置。该方法消除了激光器装配定位误差导致的指向偏差和激光器不稳定导致的光束漂移。建立了激光旋转测量法测量精度的数学模型,进行数值模拟,计算结果表明:测量精度与激光旋转半径无关,与光斑采样点数成正比,接收屏与轴系轴心的垂直度偏差对测量精度影响不大。利用改进的最小二乘法进行数值拟合,进一步提高了激光旋转测量法的测量精度。  相似文献   

10.
针对厚度测量中对射激光束共线性的要求,提出了一种基于双分光棱镜的传感器光轴空间位姿视觉检测方法。在分光镜坐标系下,分析了单条激光束在组合分光棱镜中的光线传播和光斑变化规律,建立了两条激光相对位姿与光斑中心点之间的数学模型。借助于棱镜坐标系和图像坐标系之间的转换关系,可以根据四个拟合光斑中心坐标快速计算出激光束的相对位姿,进而将激光束的共线测量转换为光斑中心坐标的拟合、对比问题。实验结果表明,在传感器测量范围内,该方法可以使两条激光束之间的夹角不大于0.17°,距离不大于0.05 mm;同时,调整前后对量块的测量表明,厚度测量误差由12μm减小到4μm,间接验证了共线检测方法的有效性。所提方法实现了光束调整过程的数字化、可视化,并且使共线性测量结果具有可溯源性,有助于定量分析因两个激光传感器测量线不重合而引起的厚度测量误差。  相似文献   

11.
为研究在不同方向移动的金属薄膜边缘的干扰情况下谐振激光模式的改变现象,调节定制的氦氖激光谐振腔产生高阶高斯光束,用金属薄膜边缘进行干扰,并用CCD相机对光束的演变过程进行详细记录。随着金属薄膜边缘沿X和Y正方向上位移的增加,出射的激光模式由高阶向低阶模式演化,然后变成基模,变弱直到消失。原始激光模式的阶数越高,它的演化模式光斑形状越丰富。当用金属薄膜上方边缘向Y轴正向缓慢移动进行干扰时,激光模式的演化规则是最后趋于沿X轴的分裂模式;当用金属薄膜的左侧边缘向X轴正向缓慢移动进行干扰时,激光模式的演化规则最后趋于沿Y轴的分裂模式。  相似文献   

12.
双波长集成光栅干涉微位移测量方法   总被引:2,自引:0,他引:2  
陈烽  叶雄英  伍康  冯金扬 《光学精密工程》2012,20(11):2433-2437
介绍了一种基于双波长激光的集成光栅干涉位移检测方法,利用该方法对硅-玻璃键合工艺制作的集成光栅位移敏感芯片进行了测试实验。实验系统主要由敏感芯片、波长为640nm和660nm的双波长半导体激光器、双光电二极管及检测电路组成,敏感芯片则由带反射面的可动部件和透明基底上的金属光栅组成。入射激光照射到光栅上产生衍射光斑,衍射光的光强随可动部件与光栅之间的距离变化,通过分别测量两个波长的衍射光强信号并交替切换选取灵敏度较高的输出信号,实现了一定范围内的扩量程位移测量,并得到绝对位置。实验结果表明,利用双波长集成光栅干涉位移检测方法测得敏感芯片可动部件与基底光栅的初始间隙为7.522μm,并实现了间隙从7.522μm到6.904μm区间的高灵敏度位移测量,其噪声等效位移为0.2nm。  相似文献   

13.
同轴度同步旋转测量的空间投影解析   总被引:1,自引:0,他引:1  
研究了国际上同轴度准直测量的专利发展状况。在这些专利材料研究的基础上,对2轴三维空间准直测量建立数学模型,用三维空间的思想来描述一个运动的准直激光在一个同步旋转轴的垂直二维平面位置测量装置上的投影,解决同轴度测量空间解析问题。通过试验检测同轴测量空间坐标的位置变化。原来的激光光斑在从动轴垂直平面中为椭圆曲线,在位置检测器件坐标中曲线也发生了改变,并且展示了角偏差变化和轴心的位置变化对曲线的影响。  相似文献   

14.
提出一种光栅反射对准法:在极坐标激光直写系统中利用光栅反射聚焦光斑来校准光轴和工件台的转动轴;被光栅反射的聚焦光斑成像在CCD上。当聚焦透镜的光轴和工件台的转动轴存在对准误差时,如果转动光栅,激光光斑将在光栅上扫描出一个圆形轨迹。通过观测这个轨迹,能估算出光轴和转轴的对准误差并相应地做出调整减小对准误差。采用光栅反射法,现将光轴和转轴的对准误差减少到小于0.5μm。  相似文献   

15.
三维激光球杆仪是自研发的一种被动式激光跟踪仪,为了提高其测量精度,该文系统地分析了其主要误差源及补偿方法。首先,通过误差源分析,基于多体系统误差建模理论对仪器进行精度建模;其次,针对误差补偿模型,提出了简单有效的模型参数测量方法,即多齿分度台和光电自准直仪标定二维转台两测角误差,正倒镜法测量两旋转轴的不相交度,精密三轴机床测量轴系不垂直度误差;最后,完成精度补偿验证。实验结果表明,在有效测量范围内,补偿后的垂直度误差从120μm减小到28μm,X轴定位误差从20μm减小到8μm,Z轴定位误差从60μm减小到25μm。研究表明该补偿方法在不改变硬件结构的基础上能有效提高仪器的精度。  相似文献   

16.
制作出一种厚度为30μm的手性E型胆甾相液晶薄膜,通过原子力显微镜测试显示其螺距为364nm。使用He-Ne激光对其出射光的偏振特性及左右圆偏振光透射特性进行测试,结果表明手性E型胆甾相液晶表现出较强的左圆偏振光透射特性,其左右圆偏振光透射比为1∶0.4。  相似文献   

17.
为了检测和表征斯密特棱镜的偏振像差,提出弥散圆检测法和B值检测法,对两种方法的原理进行了阐述,并对具体检测方法进行了介绍。弥散圆检测对传统弥散圆检测法进行了补充,增加光斑中心距和光斑变形度测量使它能够表征棱镜偏振像差。B值检测基于自然光的矢量衍射公式,通过对B值的检测分析了偏振像差产生的根源。  相似文献   

18.
红外热像光学镜组轴偏测量仪   总被引:1,自引:0,他引:1  
原则设计了用于8-14μm红外光学镜组的轴偏检测系统,系统包括CO2激光器、可调焦望远镜、TGS热释电热像仪与计算机配合的数据读出及处理、径向跳动≤1μm,轴向晃动≤1″的高精密基准轴工作台.测量精度角度≤2″,线度≤0.02mm.编制了轴偏数据处理程序.更换光源(用波长3.39μm的He-Ne激光代替CO2激光)系统可用于3-5μm红外光学系统的测量.  相似文献   

19.
激光光斑中心检测是光学测量中常用的关键技术。检测算法的精度及速度直接影响了测量的精度及速度。针对外场环境下干扰较强的特点,研究了重心法、Hough变换法以及圆拟合算法,通过理论分析与实验,提出一种改进的激光光斑中心检测算法,提高了中心检测的精度、速度及抗干扰性,可用于外场环境的实时光学测量。  相似文献   

20.
光轴一致性是衡量多传感器光电系统工作性能的重要指标,为了解决多传感器轴一致性检测系统工作波段范围较窄、系统灵活性较低的问题,本文结合光路切换和光热转换的思想,设计了一套宽光谱多传感器轴一致性检测系统。该系统采用卡塞格林反射式光学系统作为从可见光到长波红外范围内的接收和发射系统;通过步进电机的驱动,带动导轨上方反光镜位置移动,实现系统光路的切换;采用镀有硫化铜的锗玻璃,作为光热转换靶材,将短波长的光斑转换为热斑,采用长波红外探测器实现对各波段激光光斑图像采集。系统能够实现0.4~14μm波段光谱范围的检测;对光学系统进行像质评价分析,可以得到系统在不同波段下由像差引起的弥散斑(Root mean square, RMS)直径均在9μm以下,能量集中度较好;对系统检测精度进行分析,最大测量误差为0.1 mrad;通过导轨往返运动重复精度实验和系统测量准确度实验,对系统可靠性进行验证,结果表明检测系统满足仪表准确度1.5级的要求。该检测系统结构紧凑,适用波谱范围广,能够实现对多传感器光电设备的轴一致性检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号