首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为获取波动载荷下弓网滑动电接触载流特性,利用FCH-03型销盘式滑动电接触摩擦磨损试验机模拟弓网接触状态,进行强电流密度、不同速度与波动接触压力条件下的浸金属碳/铜对磨实验。根据实验数据获得载流效率、载流稳定性在不同条件下的特性规律,并针对影响受流的运行速度、接触电流、波动接触压力等因素作出深入的机理分析及电弧能量干扰相关性分析。研究表明:载流效率随接触压力振幅的增大而减小,随接触压力频率的增大呈较小的增大趋势。载流稳定性随接触压力振幅的增大而减小。低速时基本不随接触压力频率变化;高速时随接触压力频率增大呈先增大后减小。弓网离线及离线电弧是导致高速弓网系统载流质量下降的主要原因。  相似文献   

2.
陈忠华  王一帆  杨彩红  时光  回立川 《高压电器》2019,55(10):148-155,163
在实际的列车运行过程中压力载荷是以正弦形式波动变化,波动载荷对弓网系统中的接触电阻特性有重要影响。文中利用销盘式高速载流摩擦磨损实验机模拟弓网系统中的压力波动状态,研究了波动载荷、滑动速度和接触电流对动态接触电阻特性的影响,结合表面形貌对其变化规律产生的原因进行了分析。结果表明:载流滑动接触且压力波动频率一定时,动态接触电阻随压力波动幅度的增大先减小后增大;压力波动幅度一定时,动态接触电阻随压力波动频率的增大而缓慢增大;波动载荷条件下,动态接触电阻随滑动速度的增大而逐渐增大,随接触电流的增大而逐渐减小。高温电弧和接触温升是导致动态接触电阻变化的主要原因。  相似文献   

3.
电气化铁路中接触网与受电弓良好的接触是列车安全可靠运行的前提条件,而弓网的接触是载流条件下的摩擦接触,因此有必要对其摩擦接触进行深入研究。文中通过滑动电接触实验机,开展不同工况(压力波动幅度、压力波动频率、接触电流、滑动速度)条件下的弓网滑动电接触摩擦力研究。研究表明:作用于滑板上的接触电流增大时,弓网间的滑动摩擦力随之减小;压力波动幅度和滑动速度增大时,弓网间的摩擦力也随之增大;压力波动频率对弓网摩擦力的影响极小。利用曲线估计的基本思想,优选出最能表达压力波动幅度、接触电流、滑动速度各参量对弓网间滑动摩擦力影响的单一因素数学模型;在此基础上,通过多元回归方法建立压力波动载荷和电流作用下的弓网摩擦力模型并验证模型的有效性。  相似文献   

4.
电气化铁路受电弓与接触网(弓网)系统的载流摩擦性能是影响列车受流和受电弓滑板磨损的关键因素。该文利用销盘式高速载流摩擦磨损实验机,以浸金属碳磨销与纯铜盘为摩擦副,获得与压力载荷、滑动速度、电流密度相关的摩擦力特性规律。摩擦力随着压力载荷的增加而增大,随着电流密度的增加而减小,随着滑动速度的增加而增大。并且随着压力载荷的增加,摩擦力的增大幅度逐渐变缓。在此基础上,采用支持向量机建立弓网系统下与压力载荷、滑动速度、电流密度相关的摩擦力回归模型,采用遗传算法进行参数优化。利用实验数据,验证模型的有效性,为今后弓网系统摩擦力的进一步研究提供参考。  相似文献   

5.
电力机车高速运行时,接触电流、压力波动和机车的运行速度均会影响弓网间的可靠接触。通过浸金属碳滑板与铜导线的对磨实验,得到接触电阻随接触电流、滑动速度、压力波动幅度和压力波动频率变化的特性规律。采用极限学习机(ELM)建立接触电阻与接触电流、滑动速度、压力波动幅度、压力波动频率的预测模型;综合考虑接触电阻和电流稳定系数,提出弓网滑动电接触失效判据。分析得出弓网接触失效机理:接触压力波动幅度和滑动速度增大使得弓网间摩擦振动加剧,接触电阻增大超过临界值,接触失效。在此基础上根据接触电阻概率分布建立失效概率模型,最后分析给出一定工况条件下弓网滑动电接触的失效概率。  相似文献   

6.
在电气化铁路弓网系统中,弓网滑动电接触载流摩擦振动特性是决定电力机车速度和受流质量的重要因素.波动载荷条件下,压力波动幅值、压力波动频率、受流电流和滑动速度影响弓网间摩擦振动状态.通过自制滑动电接触实验机,以铜导线和浸金属碳滑板为摩擦副进行对磨实验,通过观测滑板表面形貌,分析摩擦振动特性.结果表明,压力波动幅值、受流电...  相似文献   

7.
接触电阻是衡量弓网系统受流稳定性、可靠性的重要指标。接触载荷是弓网的调优参数,其波动特性是影响接触电阻的关键因素。基于滑动电接触实验机,开展波动载荷条件下弓网接触电阻的特性研究。首先分析了接触电阻随滑动速度、接触电流、波动频率、波动幅值的变化关系,随后采用ε不敏感支持向量机建立波动载荷、接触电流、滑动速度与接触电阻之间的预测模型,并采用假设检验的方法验证了该模型的有效性。最后,依据所建立的接触电阻模型,在以假定接触电阻上界作为受流约束的算例中,采用可视化的方法分析了速度、电流工况的可行域分布,该方法对弓网的设计与优化具有指导意义。  相似文献   

8.
《高压电器》2015,(4):133-138
弓网滑动电接触过程中,电、力、速多个物理域的复杂耦合影响列车的高速、重载、稳定运行。为了提高载荷最优控制,使摩擦副摩擦磨损与受流稳定性达到相对最佳,利用量子遗传算法优化支持向量机的相关参数,建立了受电弓滑板磨损率的预测模型。经过MATLAB仿真结果表明,量子遗传算法比遗传算法有更好的优化性能,建立的模型能够稳定预测滑板磨损率,对选取最优载荷、研究载流摩擦副材料具有重要意义。  相似文献   

9.
为电力机车提供牵引动力的受电弓滑板与接触网导线是典型的滑动电接触摩擦副,二者在工作中存在电、磁、热、力多场耦合效应,复杂的多场耦合作用将影响弓网的受流质量和摩擦磨损性能,开展电气化铁路弓网接触多物理场耦合效应研究,对降低弓网运行维护成本,提高受电弓滑板和接触网导线使用寿命等具有重要意义。该文重点归纳总结了近些年来弓网系统在电、磁、热、力多场效应下的相关研究进展。结合列车实际运行工况,综述了弓网接触电阻、电弧、接触温度、电磁力和压力载荷等因素对弓网载流摩擦磨损性能的影响规律,针对多物理场作用下研究中存在的问题与不足,提出进一步研究和完善的意见。在此基础上,从提高弓网滑动电接触性能、保障列车安全稳定运行角度,采用弓网接触电阻、燃弧率及接触温度对电接触性能的评价进行阐述和探讨,以期对弓网电接触行为进行合理预测与评估,为进一步研究弓网滑动电接触多场耦合效应提供参考。  相似文献   

10.
电气化铁路弓网系统的载流摩擦特性,严重影响着受电弓滑板与接触网导线的寿命和电力机车的受流质量。该文使用自行研制的滑动电接触实验机模拟高速铁路受电弓和接触网的接触状况,进行波动接触力下弓网载流摩擦力建模研究。通过实验数据获得不同速度下摩擦系数与接触力波动频率和波动幅度以及电流的特性规律,分别建立与波动接触力和电流相关的摩擦系数模型,并将其与速度相关的Stribeck摩擦模型相结合,实现对摩擦力模型中摩擦系数的修正,最终建立与速度、波动接触力和电流相关的弓网载流摩擦力模型。使用麦夸特法与通用全局优化算法对该模型进行参数辨识,利用实验数据验证该模型的有效性,为弓网摩擦力的预测及摩擦磨损性能的研究提供参考。  相似文献   

11.
弓网系统滑动电接触区域的高温会使摩擦副材料的磨损加剧并影响系统的受流质量,严重时甚至发生接触线断线事故。针对弓网系统受流摩擦下接触区域温度,研究弓网系统的温度场,进一步发现影响温度变化的因素。利用COMSOL仿真软件对弓网系统进行仿真,建立三维立体有限元模型,通过实验测得的数据验证了仿真模型的准确性,得出电流、压力、速度和滑板材料对接触区域的温度影响,接触区域温度随电流与速度的增加而升高,随压力的增大呈现U型变化,为弓网系统温度分析提供理论支持。  相似文献   

12.
弓网系统中,接触压力的大小直接影响列车的受流稳定性和滑板、接触网导线的使用寿命。本文通过浸金属碳滑板与铜导线的对磨实验,分析了不同载流、速度以及变化压力情况下的滑板受流和磨损情况,通过数据拟合建立电流相对稳定系数、磨损率与电流、速度和压力的预测模型,由于磨损率与电流相对稳定系数存在彼此冲突的矛盾关系,因此应用设计的多目标粒子群算法求解电流相对稳定系数和磨损率的Pareto最优前沿解,最后通过基于信噪比的多目标决策方法确定基于电流稳定性相对最好、磨损率相对最小情况下的最优压力载荷,为电力机车的实际运行调整压力载荷提供理论基础。  相似文献   

13.
在弓网滑动电接触过程中,受电弓滑板磨损加剧,大大缩短了其使用寿命。由于受电弓滑板的磨损问题与滑动摩擦力直接相关,对于滑板的滑动摩擦力的研究具有重要的理论意义。该文采用库伦+黏性静摩擦模型对滑动电接触摩擦力进行建模,再对原始摩擦模型的黏性摩擦部分进行修正,同时引入接触电流和接触力及其波动幅值与波动频率等因素,建立了一个新的摩擦模型。通过自行研制的滑动电接触实验机进行实验,利用得到的实验数据,采用粒子群算法和Matlab对新摩擦模型的参数进行辨识,并对得到的改进摩擦模型进行验证。由实验数据与改进摩擦模型的拟合效果图和残差图可知,改进摩擦模型能够对波动载荷下弓网滑动电接触滑动摩擦力进行合理预测。  相似文献   

14.
利用自行设计的滑动电接触摩擦磨损实验机,在不同速度、电流、压力的条件下,对铜锡合金导线/浸铜碳滑板做摩擦磨损实验,结合实验数据绘出受流效率在不同条件下的曲线,并对影响受流效率的滑动速度、电流以及接触压力做出了理论分析。受流效率随着速度的增加逐渐降低,且在速度较小时,受流效率随接触压力增大的幅度较大。接触力在30~80N之间时,受流效率随电流增大而增大,而接触力在80~120N之间时,受流效率随电流增大而下降,总体趋势上受流效率随接触压力增大而增大。接触压力越大、给定电流越大,受流效率越高,而且当速度增大时,受流效率受电流的影响减小,此时速度为主要影响因素。  相似文献   

15.
在列车运行过程中会有多种因素导致列车受电弓压力载荷产生波动,影响列车弓网系统的运行性能。实验测试了不同压力载荷波动幅度和波动频率条件下弓网电弧的动态特性。利用数字图像处理技术对电弧图像进行处理,分别选取电弧的面积与周长和电弧圆斑半径与弧根长度为特征量,研究与压力载荷波动的关系,统计分析了波动压力载荷下燃弧尖峰电压和燃弧电压的变化规律。随着波动振幅的增加,电弧的面积与周长先增大后减小,电弧圆斑半径有减小的趋势,弧根长度有所增大;随着波动频率的增大,电弧周长先减小后增大最后趋于稳定,电弧的面积有减小趋势,波动频率对电弧圆斑半径和弧根长度的影响不大。随着波动振幅的增大,燃弧个数变多,燃弧时间关系不明确,燃弧尖峰电压先减小后增大,电弧电压与熄弧尖峰电压基本不变,零休时间先减小后增大;随着波动频率的增大,电弧各项参数没有明显规律。  相似文献   

16.
《高压电器》2021,57(8)
插接式的气体绝缘母线(gas insulated bus,GIB)触头是大电流、非空气介质下的电接触理论在工程上的典型应用,触头通过导电杆与触指间的滑动接触来克服因导体热胀冷缩产生的热应力。设备长期运行过程中因导电杆滑动而产生的摩擦磨损直接影响触头的电接触性能。为揭示大电流、非空气介质下GIB触头的接触退化机理,文中首先对GIB触头接触模型进行简化,接着搭建了简化接触模型试样的载流摩擦试验平台,基于该平台开展了不同气体介质、接触压力和电流载荷下GIB触头试样的摩擦试验,通过高精度万用表获取了摩擦过程中试样接触电阻,并利用光学轮廓仪和SEM/EDS测量了试验后样品的摩擦磨损程度及表面能谱。试验和测量结果表明,非空气介质下,在一定限度内,随着接触压力和电流载荷的增大触头的接触电阻呈现下降趋势;同一运行条件,相比于空气介质下的电接触,非空气接触下试样表面的摩擦磨损程度较低。文中的研究结果可为其他大电流、非空气介质下的电接触设备退化预测提供参考。  相似文献   

17.
为提高弓网滑动电接触失效判断的准确率,提出了一种多策略融合改进北方苍鹰优化算法(INGO)和最小二乘支持向量机(LSSVM)的滑动电接触失效诊断模型。首先,通过自制的滑动电接触摩擦磨损实验机进行载流条件下的滑动摩擦实验,分析载流稳定系数在不同工况条件下的变化规律,确定弓网接触失效判据;其次,采用tent混沌映射、均匀分布的动态自适应权重,以及黄金正弦算法和非线性收敛因子多种融合策略综合改进NGO。通过测试函数对其进行仿真测试,结果证明INGO算法收敛速度和稳定性更优;最后,使用INGO算法进行模型参数寻优,构建滑动电接触失效诊断模型。将本文所提模型与其他诊断模型对比,诊断精度分别提高了16.67%、12.5%、8.33%,进一步证明该诊断模型具有较高的准确率和泛化能力。  相似文献   

18.
李明  李立照 《电工技术》2024,(12):166-170
北京地铁6号线自西延线开通试运营以来,受电弓和接触网出现异常磨耗,受电弓碳滑板磨耗速率急剧增大,表面呈粗糙形貌。汇总了该现象导致的设备故障并进行了测试试验。经分析,认为导致弓网异常磨耗的根本原因是新增电客车受电弓压力较小,引起了弓网间离线电弧发生的频率增大,导致弓网间接触位置温升增大、接触线软化、碳滑板材质变化,使弓网间磨损速率急剧增加,接触线出现拉丝形态。为此,提出了改进弓网关系的措施。  相似文献   

19.
弓网系统接触电阻不仅是表征其电接触性能的重要指标,而且对弓网系统的受流质量和使用寿命有着重要影响。因此开展了不同牵引电流、运行速度和接触压力条件下的动态接触电阻试验,分析了上述3个因素对接触电阻的影响机理。研究表明:当接触压力小于100 N时,弓网系统接触电阻随着接触压力的增大而减小,当接触压力大于100 N时,接触电阻的变化趋于平缓;弓网系统接触电阻随着运行速度和牵引电流的增大而增大,且上升趋势较陡峭;在运行速度和牵引电流一定时,当接触压力大于80 N时,受电弓滑板的磨损量随着接触压力的增大而增大。  相似文献   

20.
在弓网受流系统中,反映其性能的参数主要有磨耗率、载流效率和载流稳定性,均与受电弓滑板和接触网导线之间的法向载荷有着密切关系。适当的法向载荷能使磨耗率最小,亦能维持较高的载流效率及载流稳定性。论文通过对铜基粉末冶金滑板与铜锡导线的对磨实验,得到了滑板磨耗率、载流效率和载流稳定性随工况变化的规律。随后采用支持向量机(SVM)建立了以磨耗率、载流效率和载流稳定性作为因变量,以法向载荷、滑动速度和接触电流为自变量的回归模型,并通过差分进化-分布估计(DE-EDA)算法确定特定工况条件下的基于滑板磨耗率最低、载流效率和稳定性最高的最佳法向载荷及其对应的Pareto最优解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号