首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
U.S. production of fuel ethanol from corn grain has increased considerably over the last 10 years. Intense debate regarding the true environmental impact of the overall production process has been ongoing. The present study evaluated the utilization of thin stillage (a major byproduct of the dry-mill corn grain-to-ethanol process) in laboratory-scale thermophilic anaerobic sequencing batch reactors for conversion to methane. We found that augmentation of cobalt as a growth factor to the thermophilic anaerobic digestion process is required. After reaching sustainable operating performances, the methane potential in the reactors was 0.254 L CH4/g total chemical oxygen demand (TCOD) fed. Together with a reduction in the mass of solids that needs drying, methane generation translates to a 51% reduction of natural gas consumption at a conventional dry mill, which improves the net energy balance ratio from 1.26 to 1.70. At the design hydraulic retention time of 10 days, the digesters achieved TCOD, biodegradable COD, volatile solids, and total solids removal efficiencies of 90%, 75%, 89%, and 81%, respectively. We also found that struvite precipitation occurred in the thermophilic digesters during the course of the study, resulting in possibilities for nutrient recovery.  相似文献   

2.
In the literature the production of methane from waste activated sludge (WAS) was usually conducted in a continuous stirred tank reactor (CSTR) after sludge was pretreated. It was reported in our previous publication that compared with other pretreatment methods the methane production in CSTR could be significantly enhanced when sludge was pretreated by NaOH at pH 10 for 8 days. In order to further improve methane production, this study reported a new process for efficiently producing methane from sludge, that is, sludge was fermented at pH 10 for 8 days, which was adjusted by Ca(OH)(2), and then the fermentation liquid was treated in an expanded granular sludge bed (EGSB) for methane generation. First, for comparing the methane production observed in this study with that reported in the literature, the conventional operational model was applied to produce methane from the pH 10 pretreated sludge, that is, directly using the pH 10 pretreated sludge to produce methane in a CSTR. It was observed that the maximal methane production was only 0.61 m(3)CH(4)/m(3)-reactor/day. Then, the use of fermentation liquid of pH 10 pretreated sludge to produce methane in the reactors of up-flow anaerobic sludge bed (UASB), anaerobic sequencing batch reactor (ASBR) and EGSB was compared. The maximal methane production in UASB, ASBR, and EGSB reached 1.41, 3.01, and 12.43 m(3)CH(4)/m(3)-reactor/day, respectively. Finally, the mechanisms for EGSB exhibiting remarkably higher methane production were investigated by enzyme, adenosine-triphosphate (ATP), scanning electron microscope (SEM) and fluorescence in situ hybridization (FISH) analyses. It was found that the granular sludge in EGSB had the highest conversion efficiency of acetic acid to methane, and the greatest activity of hydrolysis and acidification enzymes and general physiology with much more Methanosarcinaceae.  相似文献   

3.
A modified three-stage methane fermentation system was developed to digest food waste efficiently. This system consisted of three stages: semianaerobic hydrolysis, anaerobic acidogenesis and strictly anaerobic methanogenesis. In this study, we examined the effects of temperature and hydraulic retention time (HRT) on the methanogenesis. Operation temperature was adjusted from 30 degrees C to 55 degrees C, and the HRTs ranged from 8 to 12 d. The rate of soluble chemical oxygen demand (sCOD) removal correlated with digestion time according to the first-order kinetic model developed by Grau et al. [Water Res., 9, 637-642 (1975)]. With liquor food waste, thermophilic digesters showed a higher rate of sCOD removal than mesophilic digesters. The rates of biogas and methane production by thermophilic digesters were higher than those by mesophilic digesters regardless of HRT. Although maximum biogas production occurred when an HRT of 10 d was used, the methane yield was the highest in the reactor when an HRT of 12 d was used (223 l CH4/kg sCODdegraded). However, digestion stability decreased when an HRT of 8 d was used. The concentration of NH3-N generated in this experiment did not inhibit anaerobic digestion.  相似文献   

4.
《Journal of dairy science》2019,102(12):11766-11776
The objective of this study was to investigate the effects of forage source (red clover silage: RCS vs. corn silage: CS) and diet supplementation with linseed oil (LO) on CH4 emissions of manure from dairy cows. For this purpose, 12 lactating cows were used in a 2 × 2 factorial arrangement of treatments. Cows were fed (ad libitum) RCS- or CS-based diets (forage:concentrate ratio 60:40; dry matter basis) without or with LO addition (4% dry matter). Feces and urine were collected from each cow and mixed with residual sludge obtained from a manure storage structure. Manure was incubated for 17 wk at 20°C under anaerobic conditions (O2-free N2) in 500-mL glass bottles. Methane emissions and changes in chemical composition of the manure were monitored during the entire incubation period. The total amount of feces and urine excreted by cows was not affected by dietary treatments and averaged 6.6 kg/d of volatile solids (VS). Compared with manure from cows fed RCS-based diets, maximum CH4 production potential of manure from cows fed CS-based diets was 54% higher (182 vs. 118 L/kg of VS) throughout the incubation period. Maximum CH4 production potential from manure also increased (by 17%) when cows were fed LO-supplemented diets compared with those fed nonsupplemented diets. Similar to maximum CH4 production potential, VS degraded during incubation (i.e., VS loss) was higher from manure from cows fed CS-based diets versus cows fed RCS-based diets (30.6 vs. 22.5%), and increased (+3 percentage units, on average) with the addition of LO to the diets. Ammonia concentration in manure was higher when cows were fed CS-based diets compared with RCS-based diets, and declined with LO supplementation to CS and RCS diets. It is concluded that both dietary forage source and fat supplementation affect maximum CH4 production potential from manure and this should be taken into account when such dietary options are recommended to mitigate enteric CH4 emissions from dairy cows.  相似文献   

5.
To avoid the inhibition of methane production by ammonia that occurs during the degradation of garbage, anaerobic digestion with prior ammonia production and subsequent stripping was investigated. In the ammonia production phase, the maximum ammonia concentration was approximately 2800 mg N/kg of total wet sludge in the range of 4 days of sludge retention time, indicating that only 43% of total nitrogen in the model garbage was converted to ammonia. The model garbage from which ammonia was produced and stripped was subjected to semi-continuous thermophilic dry anaerobic digestion over 180 days. The gas yield was in the range of 0.68 to 0.75 Nm(3)/kg volatile solid, and it decreased with the decrease of the sludge retention time. The ammonia-nitrogen concentration in the sludge was kept below 3000 mg N/kg total wet sludge. Microbial community structure analysis revealed that the phylum Firmicutes dominated in the ammonia production, but the community structure changed at different sludge retention times. In dry anaerobic digestion, the dominant bacteria shifted from the phylum Thermotogae to Firmicutes. The dominant archaeon was the genus Methanothermobacter, but the ratio of Methanosarcina increased during the process of dry anaerobic digestion.  相似文献   

6.
The purpose of this study was to increase the efficiency of anaerobic digestion of waste activated sludge (WAS). Either thermochemical or biological hydrolysis was used as a pretreatment and the effects of both were investigated and compared. Two different three-stage digestion systems showed improved performance, although thermochemical hydrolysis showed better results than biological hydrolysis in a bench-scale operation. After anaerobic digestion with thermochemical pretreatment, the total chemical oxygen demand (tCOD) reduction, volatile solid (VS) reduction, methane yield and methane biogas content were 88.9%, 77.5%, 0.52 m3/kg VS and 79.5%, respectively. These results should help in determining the best hydrolysis pretreatment process for anaerobic digestion and in improving the design and operation of the large-scale treatment of WAS by anaerobic digestion with hydrolysis systems.  相似文献   

7.
将马氏甲烷八叠球菌、地农芽胞杆菌、施氏假单胞菌、谢氏丙酸杆菌接种于秸秆厌氧发酵体系中,考察添加柠檬酸盐对沼气产量、纤维素降解率和木质素降解率的影响.研究发现:添加3g/L柠檬酸盐(添加组)促进了体系的产气效率,沼气产量比对照提高了1倍,其总固体(TS)、挥发性固体(VS)含量分别比对照降低11.2%和5.1%.对照挥发性脂肪酸(VFA)浓度在84h达最大值,达到7.07g/L,仅为添加组的80%,其平均积累速率51.6mg/(L·h),比添加组69.2mg/(L·h)降低25.4%,说明添加柠檬酸盐提高了厌氧发酵体系TS、VS的利用率,促进了厌氧体系乙酸和丙酸、丁酸等VFA的合成.同时发现:秸秆厌氧发酵体系的纤维素降解率普遍高于木质素降解率7.5%左右,说明多菌耦合厌氧发酵产沼气体系的降解纤维素能力高于降解木质素的能力.  相似文献   

8.
采用改良式UASB反应器与SBR反应器组合对爆破法制浆废液进行了处理,研究结果发现,在厌氧处理段,当水力停留时间为1d时,容积负荷为5.3gCODCr/(L·d),CODCr的去除率可以达到75%,BOD5去除率达95%,平均甲烷产率为247.4ml/gCODCr。组合处理后,废液中BOD5总去除率达98%以上,达到新排放标准,CODCr总去除率为85.3%。  相似文献   

9.
酸析黑液厌氧生物处理效果研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用上流式厌氧污泥床(UASB)反应器对酸析黑液进行处理,分析了酸析黑液的厌氧可生化性(BD),重点研究了不同COD容积负荷和硫酸盐容积负荷下,反应器对COD和硫酸盐的去除效果,系统p H值、氧化还原电位(ORP)和甲烷产率的变化,反应器内污泥胞外聚合物(EPS)中蛋白质和多糖含量的变化以及污泥表面Zeta电位的变化,并结合扫描电镜观察酸析黑液厌氧处理前后污泥的形态特征。结果表明,该酸析黑液的厌氧可生化性较好,BD为85.07%。反应器随着进水COD容积负荷的增加,COD去除率先上升后下降。随着进水硫酸盐容积负荷的增加,硫酸盐去除率逐渐增大。当CODCr容积负荷为2.00 kg/(m3·d)时,CODCr去除率最大值在49%;当硫酸盐容积负荷提高到12.91 kg/(m3·d)时,硫酸盐去除率上升至42%左右。系统p H值随着COD容积负荷的增加而降低,ORP随着COD容积负荷的增加而降低,最后稳定在-430 m V左右,产甲烷速率随着COD容积负荷的增加先升高后降低,最大值为0.225 L/d。进水COD容积负荷的提高使得EPS中蛋白质和多糖含量升高,污泥表面Zeta电位降低,颗粒污泥表层变得紧密厚实。  相似文献   

10.
This study presents a temperature-based control strategy for the stabilization of an anaerobic reactor during organic overloads. To prove feasibility of the proposed approach the rate of methane production was followed in batch activity tests and reactor runs during mesophilic-thermophilic transitions. Within the first 0.25-6 h of temperature augmentation, an increase in the rate of methane production was observed with higher rates measured under thermophilic (above 40 degrees C) conditions. However, 24 h after startup both in batch tests and reactor runs, the rate of methane production under thermophilic conditions was inferior to that under optimal mesophilic conditions (35 degrees C). Following these results, a control strategy based on short-term augmentation of the reactor temperature was proposed and tested in a 10 L UASB reactor. The control strategy employed a multi-model observer-based estimator to stabilize the effluent COD concentration during organic overloads. The temperature-based control resulted in an increased methanization rate and improved reactor stability overall.  相似文献   

11.
在启动阶段,对传统上流式厌氧污泥层反应器(UASB)和改良的UASB反应器去除化学需氧量(COD)和发酵生物制氢进行了研究和比较.改性UASB反应器和常规UASB反应器的最大COD去除率分别为82和68.4%,最大产氢率(HPR)分别为 188.99 mmol-h2 L-1h-1 和 117.03 mmol-h2 L-...  相似文献   

12.
The thermophilic (55 degrees C) anaerobic conversion of methanol was studied in an unbuffered medium (pH 4+/-0.2) and in a phosphate buffered medium (pH 6.4+/-0.1), in both cases without bicarbonate addition. Our cultivated sludge consortium was unable to degrade methanol under acidic conditions. During the 160 d of continuous operation of an up-flow anaerobic sludge blanket (UASB) reactor (R1), at an organic loading rate (ORL) of 6 gCOD/(l.d) and pH around 4, only 5% of the applied methanol load was consumed and no methane (CH4) was detected. However, hydrogenotrophic methanogens were found to be resistant to exposure to such conditions. At the end of the trial, the hydrogenotrophic methanogenic activity of the sludge was 1.23+/-0.16 gCOD/(gVSS.d) at neutral pH. With methanol as the test substrate, the addition of bicarbonate led to acetate accumulation. A second reactor (R2) was operated for 303 d at OLRs ranging from 5.5 to 25.4 gCOD/(l.d) in order to assess the conversion of methanol at neutral pH (phosphate buffered) in a bicarbonate deprived medium. The reactor performance was poor with a methanol-COD removal capacity limited to about 9.5 gCOD/(l.d). The system appeared to be quite susceptible to any type of disturbance, even at low OLR. The fraction of methanol-COD converted to CH4 and acetate was found to be unaffected by the OLR applied. At the end of the trial, the outcome of the competition was about 50% methanogenesis and 50% homoacetogenesis.  相似文献   

13.
Waste of apples, asparagus, carrots, green peas, French beans, spinach and strawberries from a canning factory have been screened on mesophilic anaerobic digestion in 90-day experiments at loading rates varying between 0.80 and 1.60 kg volatile solids (VS) m?3 day?1 at a retention time of 32 days. Average biogas yields varied from 0.30 to 0.58 m3 kg-1 VS day?1. High percentages of reduction in VS, carbohydrate and crude fibre were obtained in most experiments. Some waste materials showed unbalanced digestion, as might be expected from carbohydrate-rich substrates. In those cases alkali addition, feed interruption and mixing with a nitrogen-rich substrate were used to overcome unbalanced digestion. Residual solids in the digested sludges were removed by flocculation with a polyelectrolyte and centrifugation; liquids with lower CODs remained after flocculation.  相似文献   

14.
Wastewater treatment processes are believed to be anthropogenic sources of nitrous oxide (N(2)O) and methane (CH(4)). However, few studies have examined the mechanisms and controlling factors in production of these greenhouse gases in complex bacterial systems. To elucidate production and consumption mechanisms of N(2)O and CH(4) in microbial consortia during wastewater treatment and to characterize human waste sources, we measured their concentrations and isotopomer ratios (elemental isotope ratios and site-specific N isotope ratios in asymmetric molecules of NNO) in water and gas samples collected by an advanced treatment system in Tokyo. Although the estimated emissions of N(2)O and CH(4) from the system were found to be lower than those from the typical treatment systems reported before, water in biological reaction tanks was supersaturated with both gases. The concentration of N(2)O, produced mainly by nitrifier-denitrification as indicated by isotopomer ratios, was highest in the oxic tank (ca. 4000% saturation). The dissolved CH(4) concentration was highest in in-flow water (ca. 3000% saturation). It decreased gradually during treatment. Its carbon isotope ratio indicated that the decrease resulted from bacterial CH(4) oxidation and that microbial CH(4) production can occur in anaerobic and settling tanks.  相似文献   

15.
Feeding nitrate to dairy cows may lower ruminal methane production by competing for reducing equivalents with methanogenesis. Twenty lactating Holstein-Friesian dairy cows (33.2 ± 6.0 kg of milk/d; 104 ± 58 d in milk at the start of the experiment) were fed a total mixed ration (corn silage-based; forage to concentrate ratio 66:34), containing either a dietary urea or a dietary nitrate source [21 g of nitrate/kg of dry matter (DM)] during 4 successive 24-d periods, to assess the methane-mitigating potential of dietary nitrate and its persistency. The study was conducted as paired comparisons in a randomized design with repeated measurements. Cows were blocked by parity, lactation stage, and milk production at the start of the experiment. A 4-wk adaptation period allowed the rumen microbes to adapt to dietary urea and nitrate. Diets were isoenergetic and isonitrogenous. Methane production, energy balance, and diet digestibility were measured in open-circuit indirect calorimetry chambers. Cows were limit-fed during measurements. Nitrate persistently decreased methane production by 16%, whether expressed in grams per day, grams per kilogram of dry matter intake (DMI), or as percentage of gross energy intake, which was sustained for the full experimental period (mean 368 vs. 310 ± 12.5 g/d; 19.4 vs. 16.2 ± 0.47 g/kg of DMI; 5.9 vs.4.9 ± 0.15% of gross energy intake for urea vs. nitrate, respectively). This decrease was smaller than the stoichiometrical methane mitigation potential of nitrate (full potential = 28% methane reduction). The decreased energy loss from methane resulted in an improved conversion of dietary energy intake into metabolizable energy (57.3 vs. 58.6 ± 0.70%, urea vs. nitrate, respectively). Despite this, milk energy output or energy retention was not affected by dietary nitrate. Nitrate did not affect milk yield or apparent digestibility of crude fat, neutral detergent fiber, and starch. Milk protein content (3.21 vs. 3.05 ± 0.058%, urea vs. nitrate respectively) but not protein yield was lower for dietary nitrate. Hydrogen production between morning and afternoon milking was measured during the last experimental period. Cows fed nitrate emitted more hydrogen. Cows fed nitrate displayed higher blood methemoglobin levels (0.5 vs. 4.0 ± 1.07% of hemoglobin, urea vs. nitrate respectively) and lower hemoglobin levels (7.1 vs. 6.3 ± 0.11 mmol/L, urea vs. nitrate respectively). Dietary nitrate persistently decreased methane production from lactating dairy cows fed restricted amounts of feed, but the reduction in energy losses did not improve milk production or energy balance.  相似文献   

16.
The objective of this study was to examine the effects of feeding conventional corn silage (CCS) or brown midrib corn silage (BMCS) to dairy cows on CH4 emissions from stored manure. Eight lactating cows were fed (ad libitum) a total mixed ration (forage:concentrate ratio 65:35; dry matter basis) containing 59% (dry matter basis) of either CCS or BMCS. Feces and urine were collected from each cow and mixed with residual sludge obtained from a manure storage structure. Manure was incubated for 17 wk at 20°C under anaerobic conditions (O2-free N2) in 500-mL glass bottles. Methane emissions and changes in chemical composition of the manure were monitored during the incubation period. The total amount of feces and urine excreted was higher for cows fed BMCS than for cows fed CCS [8.6 vs. 6.5 kg/d of volatile solids (VS)]. Manure from cows fed BMCS emitted more CH4 than manure from cows fed CCS (173 vs. 146 L/kg of VS) throughout the incubation period. Similarly, VS and neutral detergent fiber losses throughout incubation were higher for manure from cows fed BMCS versus cows fed CCS (37.6 vs. 30.6% and 46.2 vs. 31.2%, respectively). Manure NH3 concentration (79% of total manure N) was not affected by corn silage cultivar. Results of this study show that using a more digestible corn silage cultivar (BMCS vs. CCS) may increase the contribution of manure to CH4 emissions, and may offset gain achieved by reducing enteric CH4 emissions.  相似文献   

17.
Autogenerative high pressure digestion (AHPD) is a novel configuration of anaerobic digestion, in which micro-organisms produce autogenerated biogas pressures up to 90 bar with >90% CH(4)-content in a single step reactor. (1) The less than 10% CO(2)-content was postulated to be resulting from proportionally more CO(2) dissolution relative to CH(4) at increasing pressure. However, at 90 bar of total pressure Henry's law also predicts dissolution of 81% of produced CH(4). Therefore, in the present research we studied whether CO(2) can be selectively retained in solution at moderately high pressures up to 20 bar, aiming to produce high-calorific biogas with >90% methane. Experiments were performed in an 8 L closed fed-batch pressure digester fed with acetate as the substrate. Experimental results confirmed CH(4) distribution over gas and liquid phase according to Henry's law, but the CO(2)-content of the biogas was only 1-2%, at pH 7, that is, much lower than expected. By varying the ratio between acid neutralizing capacity (ANC) and total inorganic carbon (TIC(produced)) of the substrate between 0 and 1, the biogas CO(2)-content could be controlled independently of pressure. However, by decreasing the ANC relative to the TIC(produced) CO(2) accumulation in the aqueous medium caused acidification to pH 5, but remarkably, acetic acid was still converted into CH(4) at a rate comparable to neutral conditions.  相似文献   

18.
造纸生化污泥和餐厨垃圾混合厌氧消化实验   总被引:2,自引:0,他引:2       下载免费PDF全文
采用中温单相间歇式厌氧消化工艺,对造纸生化污泥和餐厨垃圾进行混合厌氧消化制取甲烷,通过设计两种物料的不同配比(以挥发性固体VS计),研究了不同配比混合物料的产甲烷性能。实验结果表明,在中温(37±2)℃条件下,各发酵瓶(3个发酵瓶编号A1、A2和A3,分别为造纸生化污泥:餐厨垃圾=1:3,2:2和3:1)的甲烷累积产量和甲烷日产量均为A2>A1>A3,其中甲烷累积产量最高值为9743 mL,甲烷日产量最高值为650 mL;各发酵瓶VS的去除率也遵循A2>A1>A3,其中最高去除率达41%;各发酵瓶中挥发性脂肪酸(VFA)浓度和碱度大小顺序符合A1>A2>A3,其中A1出现了碱度和VFA浓度过高的现象,而A2和A3的碱度和VFA浓度均处于较适范畴。可见造纸生化污泥和餐厨垃圾混合消化产甲烷是可行的,两种物料的较佳配比是1:1。  相似文献   

19.
采用连续流CSTR-UASB两相厌氧反应装置,CSTR以人工配制的红糖水作为发酵底物,其液相末端产物作为UASB的反应底物,污水处理厂剩余污泥作为反应器的启动污泥,反应器实现稳定运行(CSTR为乙醇型发酵)后,在其它参数不变的情况下,通过改变有机负荷,研究其对CSTR-UASB两相厌氧系统的影响.有机负荷从12 kg/(m^3·d)提升至32 kg/(m^3·d)的过程分为六个阶段,结果表明厌氧活性污泥产氢能力持续升高,在有机负荷为32 kg/(m^3·d)时,最大产氢量为12.8L/d,较初始有机负荷12 kg/(m^3·d)时提高了71.9%;产甲烷量随有机负荷的升高先增大后减小,在有机负荷为24 kg/(m^3·d)时,最大产甲烷量为18.5L/d;当有机负荷提高至28 kg/(m^3·d)时,总COD去除率达最大值72%.因此,CSTR-UASB两相厌氧系统对红糖废水具有较好的降解效果,同时能源回收效率较高.  相似文献   

20.
《Journal of dairy science》2023,106(7):4608-4621
The aim of this trial was to determine the effect of a garlic and citrus extract supplement (GCE) on the performance, rumen fermentation, methane emissions, and rumen microbiome of dairy cows. Fourteen multiparous Nordic Red cows in mid-lactation from the research herd of Luke (Jokioinen, Finland) were allocated to 7 blocks in a complete randomized block design based on body weight, days in milk, dry matter intake (DMI), and milk yield. Animals within each block were randomly allocated to a diet with or without GCE. The experimental period for each block of cows (one for each of the control and GCE groups) consisted of 14 d of adaptation followed by 4 d of methane measurements inside the open circuit respiration chambers, with the first day being considered as acclimatization. Data were analyzed using the GLM procedure of SAS (SAS Institute Inc.). Methane production (g/d) and methane intensity (g/kg of energy-corrected milk) were lower by 10.3 and 11.7%, respectively, and methane yield (g/kg of DMI) tended to be lower by 9.7% in cows fed GCE compared with the control. Dry matter intake, milk production, and milk composition were similar between treatments. Rumen pH and total volatile fatty acid concentrations in rumen fluid were similar, whereas GCE tended to increase molar propionate concentration and decrease the molar ratio of acetate to propionate. Supplementation with GCE resulted in greater abundance of Succinivibrionaceae, which was associated with reduced methane. The relative abundance of the strict anaerobic Methanobrevibacter genus was reduced by GCE. The change in microbial community and rumen propionate proportion may explain the decrease in enteric methane emissions. In conclusion, feeding GCE to dairy cows for 18 d modified rumen fermentation and microbiota, leading to reduced methane production and intensity without compromising DMI or milk production in dairy cows. This could be an effective strategy for enteric methane mitigation of dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号