首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aspects of the chemical ecology of the black-banded oak borer, (BBOB) Coroebus florentinus (Coleoptera: Buprestidae), were studied. Odors produced by males and females were similar, both qualitatively and quantitatively. Nonanal, decanal, and geranylacetone, identified in the headspace of both sexes, elicited strong electroantennographic responses from male antennae, but not from female antennae. In dual-choice olfactometer experiments, a blend of these three compounds was attractive to both sexes; males responded to decanal alone, while females responded to geranylacetone alone, suggesting that these compounds are responsible for activity of the blend to the respective sexes. Antennae of both sexes responded electroantennographically to the green leaf volatiles (E)-2-hexenal, (E)-2-hexenol, 1-hexanol, (Z)-3-hexenyl acetate, and n-hexyl acetate, all identified from the host plant Quercus suber. In behavioral experiments, only females were attracted to host-plant odors, and in tests with synthetic compounds, females were attracted to (E)-2-hexenol, 1-hexanol, and (Z)-3-hexenyl acetate. It is likely that these compounds play a role in foraging and/or oviposition behavior of BBOB females.  相似文献   

2.
The tea weevil, Myllocerinus aurolineatus (Voss) (Coleoptera: Curculionidae), is a leaf-feeding pest of Camellia sinensis (O.Ktze.) with aggregative behaviors that can seriously reduce tea yield and quality. Although herbivore-induced host plant volatiles have been shown to attract conspecific individuals of some beetle pests, especially members of the Chrysomelidae family, little is known about the volatiles emitted from tea plants infested by M. aurolineatus adults and their roles in mediating interactions between conspecifics. The results of behavioral bioassays revealed that volatile compounds emitted from tea plants infested by M. aurolineatus were attractive to conspecific weevils. Volatile analyses showed that infestations dramatically increased the emission of volatiles, (Z)-3-hexenal, (Z)-3-hexenol, (E)-β-ocimene, linalool, phenylethyl alcohol, benzyl nitrile, indole, (E, E)-α-farnesene, (E)-nerolidol, and 31 other compounds. Among the induced volatiles, 12 chemicals, including γ-terpinene, benzyl alcohol, (Z)-3-hexenyl acetate, myrcene, benzaldehyde, (Z)-3-hexenal, and (E, E)-α-farnesene, elicited antennal responses from both sexes of the herbivore, whereas (E)-β-ocimene elicited antennal responses only from males. Using a Y-tube olfactometer, we found that six of the 13 chemicals, γ-terpinene, benzyl alcohol, (Z)-3-hexenyl acetate, myrcene, benzaldehyde, and (Z)-3-hexenal, were attractive to both males and females; two chemicals, (E/Z)-β-ocimene and (E, E)-α-farnesene, were attractive only to males; and four chemicals, (E)-4,8-dimethyl-1,3,7-nonatriene, phenylethyl alcohol, linalool, and (Z)-3-hexenol, were attractive only to females. The findings provide new insights into the interactions between tea plants and their herbivores, and may help scientists develop new strategies for controlling the herbivore.  相似文献   

3.
FemaleMicroplitis croceipes wasps were tested in a wind tunnel for their ability to orient to various concentrations of eight different green leaf volatile (GLV) substances [hexanal, (E)-2-hexenal, (E)-2-hexen-1-ol, (Z)-3-hexen-1-ol, (E)-2-hexenyl acetate, (Z)-3-hexenyl acetate, (Z)-3-hexenyl propionate, and (Z)-3-hexenyl butyrate]. Overall, the esters elicited the greatest percentage of successful orientation flights, the alcohols elicited an intermediate response, and the aldehydes elicited a low response. The semilog dose-response curves were generally hill-shaped with high responses at medium release rates and low responses at high or low release rates. For the aldehydes, positive responses occurred at all GLV release rates between 0.01 and 100 nl/min. For some alcohols and esters, positive responses occurred at release rates as low as 1 pl/min and as high as 1μl/min. These data show thatM. croceipes wasps are strongly attracted to GLVs and are capable of orienting to GLV concentrations that would occur in nature when a caterpillar feeds on a green leaf. Hence, in nature, GLVs may be important clues, enablingM. croceipes to locate their hosts.  相似文献   

4.
Defense-Inducing Volatiles: In Search of the Active Motif   总被引:1,自引:0,他引:1  
Herbivore-induced volatile organic compounds (VOCs) are widely appreciated as an indirect defense mechanism since carnivorous arthropods use VOCs as cues for host localization and then attack herbivores. Another function of VOCs is plant–plant signaling. That VOCs elicit defensive responses in neighboring plants has been reported from various species, and different compounds have been found to be active. In order to search for a structural motif that characterizes active VOCs, we used lima bean (Phaseolus lunatus), which responds to VOCs released from damaged plants with an increased secretion of extrafloral nectar (EFN). We exposed lima bean to (Z)-3-hexenyl acetate, a substance naturally released from damaged lima bean and known to induce EFN secretion, and to several structurally related compounds. (E)-3-hexenyl acetate, (E)-2-hexenyl acetate, 5-hexenyl acetate, (Z)-3-hexenylisovalerate, and (Z)-3-hexenylbutyrate all elicited significant increases in EFN secretion, demonstrating that neither the (Z)-configuration nor the position of the double-bond nor the size of the acid moiety are critical for the EFN-inducing effect. Our result is not consistent with previous concepts that postulate reactive electrophile species (Michael-acceptor-systems) for defense-induction in Arabidopsis. Instead, we postulate that physicochemical processes, including interactions with odorant binding proteins and resulting in changes in transmembrane potentials, can underlie VOCs-mediated signaling processes.  相似文献   

5.
The effect of herbivory on the composition of the volatile blends released by cotton seedlings was investigated by collecting volatiles from undamaged, freshly damaged (0–2 hr after initiation of feeding), and old damaged (16–19 hr after initiation of feeding) plants on which corn earworm caterpillars (Helicoverpa zea Boddie) were actively feeding. A blend of 22 compounds was consistently observed to be emitted by the old damaged plants with nine occurring either only in, or in significantly greater amounts in old damaged, as compared with freshly damaged plants. These were (Z)-3-hexenyl acetate, hexyl acetate, (E)--ocimene, (3E)-4,8-dimethyl-1,3,7-nonatriene, (Z)-3-hexenyl butyrate, (E)-2-hexenyl butyrate, (Z)-3-hexenyl 2-methylbutyrate, (E)-2-hexenyl 2-methylbutyrate, and indole. The nature of this response is compared with other studies where herbivore-induced volatile responses are also known. The presence of large amounts of terpenes and aldehydes seen at the onset of feeding and the appearance of other compounds hours later suggest that cotton defense mechanisms may consist of a constitutive repertoire that is augmented by an induced mechanism mobilized in response to attack. A number of the induced compounds are common to many plants where, in addition to an immediate defensive function, they are known to be involved in the attraction of natural enemies.  相似文献   

6.
A synthetic mixture of nine green leaf volatiles (GLVs) including linalool was tested on antennae of Ips typographus (L.) with coupled gas chromatographic–electroantennographic detection (GC-EAD). Strong responses were found to 1-hexanol, (Z)-3-hexen-1-ol, and (E)-2-hexen-1-ol. Weak responses were recorded to (E)-3-hexen-1-ol, (Z)-2-hexen-1-ol and linalool, while hexanal, (E)-2-hexenal and (E)-3-hexenyl acetate elicited no EAD responses. In a laboratory walking bioassay, the attraction of I. typographus females to a synthetic pheromone source was significantly reduced when a mixture of the three most EAD-active GLV alcohols was added to the source. Further reduction in response was obtained when these three alcohols were combined with verbenone (Vn). In field trapping experiments, a blend of 1-hexanol, (Z)-3-hexen-1-ol, and (E)-2-hexen-1-ol reduced I. typographus trap catches by 85%, while ca. 70% reduction of trap catch was achieved by Vn or a blend of (E)-3-hexen-1-ol, (Z)-2-hexen-1-ol, and linalool. The strongest disruptive effect was found when Vn plus a blend of the three most EAD active GLV alcohols was added to the pheromone trap (95% catch reduction). Adding the blend of the three most EAD active alcohols to pheromone-baited traps significantly reduced the proportion of males captured. These three GLV alcohols were also disruptive in the laboratory and in the field when tested individually. Hexanal, (E)-2-hexenal, and (Z)-3-hexenyl acetate were inactive both in the lab and in the field. Our results suggest that these nonhost green leaf alcohols may explain part of the host selection behavior of conifer-attacking bark beetles and may offer a source of inhibitory signals for alternative management strategy for forest protection.  相似文献   

7.
Holotrichia parallela (Coleoptera: Scarabaeoidea) is a notorious pest of many crops. To improve the effectiveness of its female-produced sex pheromone (L-isoleucine methyl ester:(R)-(?)-linalool = 6:1), 14 plant volatiles, including dodecanoic acid, dodecanal, farnesol, α-farnesene, (Z)-3-hexen-1-ol, (E)-2-hexen-1-ol, (Z)-3-hexenyl acetate, (E)-2-hexenyl acetate, (R)-(+)-limonene, α-phellandrene, α-pinene, ocimene, methyl benzoate, and benzaldehyde, were individually evaluated using electroantennography and olfactometer assays. (E)-2-Hexenyl acetate and (Z)-3-hexenyl acetate were found to elicit the strongest responses in both males and females. Further testing of these two compounds in mixtures with the sex pheromone indicated that (E)-2-hexenyl acetate had a stronger synergistic effect than (Z)-3-hexenyl acetate. Field evaluations showed that mixtures of (E)-2-hexenyl acetate and the sex pheromone resulted in significantly higher catches than the sex pheromone alone. Using a 5:1 mixture of the sex pheromone and (E)-2-hexenyl acetate, the maximum number of females per trap per day was 14, showing a synergistic effect of a factor of four. For males, a 3:1 mixture of the sex pheromone and (E)-2-hexenyl acetate yielded a maximum number of 310 individuals per trap per day, equivalent to a synergistic effect of 175%. These results may provide the basis for the development of efficient pest management systems against H. parallela using plant volatiles and insect sex pheromones.  相似文献   

8.
Olfactory reception of potential pheromones and host-plant odors by male and female tarnished plant bugs (TPBs),Lygus lineolaris (Hemiptera: Miridae), was investigated by utilizing electroantennogram (EAG) techniques. In general, EAGs were similar between the sexes. Among 31 compounds of seven chemical groups tested, insect-produced butyrates and host-plant-containing green leaf volatiles (GLVs) were the most active. Hexyl butyrate and (E)-2-hexenyl butyrate elicited greater EAGs in males than in females. Females responded with significantly greater EAGs to alcohol and aldehyde GLVs than to their acetate derivatives. Among GLVs, sexual dimorphism was also observed in response to (E)-2-hexenol and (E)-2-hexenal. Females were more sensitive to the monoterpene geraniol than were males. While nonanal was the most stimulatory compound tested, no sexual differences in EAGs to this compound were observed. These studies reveal olfactory receptors on TPB antennae responsive to insect and host-plant volatiles that are likely to play a role in host finding and sexual attraction.  相似文献   

9.
Plant volatiles play an important role in the lives of phytophagous insects, by guiding them to oviposition, feeding and mating sites. We tested the effects of different host-plant volatiles on attraction of Lobesia botrana males to the female-produced sex pheromone, in a wind tunnel. Addition of volatile emissions from grapevines or individual plant volatiles to pheromone increased the behavioral responses of L. botrana males over those to pheromone alone. At a low release rate (under-dosed) of pheromone, addition of (E)-β-caryophyllene, (Z)-3-hexenyl acetate, 1-hexanol, or 1-octen-3-ol increased all behavioral responses, from activation to pheromone source contact, while addition of (E)-4,8-dimethyl-1,3,7-nonatriene, (E)-β-farnesene, (Z)-3-hexenol, or methyl salicylate affected only the initial behavioral responses. Dose–response experiments suggested an optimal release ratio of 1:1000 (sex pheromone: host plant volatile). Our results highlight the role of plant volatiles in the sensory ecology of L. botrana.  相似文献   

10.
Plant volatile organic compounds (VOCs) elicited in response to herbivory serve as cues for parasitic and predatory insects. Knowledge about quantitative relationships between the extent of herbivore-induced damage and the quantities of VOCs released is scarce. We studied the kinetics of VOC-emissions from foliage of the deciduous tree Alnus glutinosa induced by feeding activity of larvae of the geometrid moth Cabera pusaria. Quantitative relationships between the intensity of stress and strength of plant response were determined. Intensity of biotic stress was characterized by herbivore numbers (0–8 larvae) and by the amount of leaf area eaten. The strength of plant response was characterized by monitoring (i) changes in photosynthesis, (ii) leaf ultrastructure, and (iii) plant volatiles. Net assimilation rate displayed compensatory responses in herbivore-damaged leaves compared with control leaves. This compensatory response was associated with an overall increase in chloroplast size. Feeding-induced emissions of products of the lipoxygenase pathway (LOX products; (E)-2-hexenal, (Z)-3-hexenol, 1-hexanol, and (Z)-3-hexenyl acetate) peaked at day 1 after larval feeding started, followed by an increase of emissions of ubiquitous monoterpenes peaking on days 2 and 3. The emission of the monoterpene (E)-β-ocimene and of the nerolidol-derived homoterpene 4,8-dimethyl-nona-1,3,7-triene (DMNT) peaked on day 3. Furthermore, the emission kinetics of the sesquiterpene (E,E)-α-farnesene tended to be biphasic with peaks on days 2 and 4 after start of larval feeding. Emission rates of the induced LOX products, of (E)-β-ocimene and (E,E)-α-farnesene were positively correlated with the number of larvae feeding. In contrast, the emission of DMNT was independent of the number of feeders. These data show quantitative relationships between the strength of herbivory and the emissions of LOX products and most of the terpenoids elicited in response to feeding. Thus, herbivory-elicited LOX products and terpenoid emissions may convey both quantitative and qualitative signals to antagonists of the herbivores. In contrast, our data suggest that the feeding-induced homoterpene DMNT conveys the information “presence of herbivores” rather than information about the quantities of herbivores to predators and parasitoids.  相似文献   

11.
Olfactometer bioassays and electrophysiological studies showed that the lacewing, Chrysopa sinica, the aphid parasitoid, Aphidius sp., and the coccinellid, Coccinella septempunctata, all responded to volatiles from tea aphids, Toxoptera aurantii, to hexane or ether rinses of tea aphid cuticles, and to synomones released by aphid-damaged tea shoots, as well as to the tea shoot–aphid complex. Each natural enemy spent more time searching on a filter paper treated with tea aphid honeydew than on a blank control filter paper. The interaction between synomones from aphid-damaged shoots and kairomones from tea aphids enhanced the responses to the plant–host complex. There was a significant, logistic dose–response relationship between the number of natural enemies responding and the odor stimulus concentration. Volatile components from the plant–host complex, obtained by air entrainment, were identified by their mass spectra and retention times and confirmed by comparison with standard samples. These were (Z)-3-hexen-1-ol, benzaldehyde, (E)-2-hexenal, (Z)-3-hexenyl acetate, ocimene, linalool, geraniol, indole, and (E)-2-hexenoic acid. The main components in a hexane rinse from tea aphid cuticle were benzaldehyde, undecane, 2,5-hexanedione, 2,5-dihydrothiophene, linalool, 4-methyl-octane, and eicosane, whereas the main components from an ether rinse were (E)-2-hexenoic acid, heptadecane, pentadecane, eicosane, tetratetracontane, and nonadecane. Benzaldehyde elicited the strongest responses from natural enemies in the olfactometer and the largest electroantennogram (EAG) responses. While the amount of odor was small, Coccinella septempunctata was slightly more sensitive than Chrysopa sinica and Aphidius sp. An increase in doses of benzaldehyde, (E)-2-hexenal, and (Z)-3-hexenyl acetate caused the EAG responses of each natural enemy to decrease. When the doses of (Z)-3-hexen-1-ol, linalool, and geranoil increased, EAGs of Chrysopa sinica and Aphidius sp. increased, but EAGs of Coccinella septempunctata decreased. When the dose of indole increased, EAGs of Coccinella septempunctata decreased, but those of Aphidius sp. increased. This study demonstrates that tea shoot–aphid complexes emit volatile synomones, while the odors from tea aphids, aphid cuticle extracts, and tea aphid honeydew contain kairomones, to which the natural enemies show a logistic dose–response.  相似文献   

12.
In the pentatomid bug,Erthesina fullo Thunberg, the odor of male metathoracic scent gland elicits an alarm response, making the male individuals of the same species alert and disperse; the alarm response of males is more obvious than that of females. Chemical composition of the glandular secretion was identified by gas chromatography and mass spectrometry data in comparison with authentic compounds. No sexual dimorphism exists in the glandular composition in this species. A total of 9 compounds [(E)-2-hexenal, (E)-4-keto-2-hexenal, (E)-2-hexenyl acetate,n-undecane,n-dodecane, (E)-2-decenal,n-tridecane, (E)-2-decenyl acetate, andn-pentadecane] are identified, among whichn-tridecane and (E)-4-keto-2-hexenal comprised nearly 70% of the total secretion in both females and males.  相似文献   

13.
Episyrphus balteatus DeGeer (Diptera, Syrphidae) is an abundant and efficient aphid-specific predator. We tested the electroantennographic (EAG) response of this syrphid fly to the common aphid alarm pheromone, (E)-β-farnesene (EβF), and to several plant volatiles, including terpenoids (mono- and sesquiterpenes) and green leaf volatiles (C6 and C9 alcohols and aldehydes). Monoterpenes evoked significant EAG responses, whereas sesquiterpenes were inactive, except for the aphid alarm pheromone (EβF). The most pronounced antennal responses were elicited by six and nine carbon green leaf alcohols and aldehydes [i.e., (Z)-3-hexenol, (E)-2-hexenol, (E)-2-hexenal, and hexanal]. To investigate the behavioral activity of some of these EAG-active compounds, E. balteatus females were exposed to R-(+)-limonene (monoterpene), (Z)-3-hexenol (green leaf alcohol), and EβF (sesquiterpene, common aphid alarm pheromone). A single E. balteatus gravid female was exposed for 10 min to an aphid-free Vicia faba plant that was co-located with a semiochemical dispenser. Without additional semiochemical, hoverfly females were not attracted to this plant, and no oviposition was observed. The monoterpene R-(+)-limonene did not affect the females’ foraging behavior, whereas (Z)-3-hexenol and EβF increased the time of flight and acceptance of the host plant. Moreover, these two chemicals induced oviposition on aphid-free plants, suggesting that selection of the oviposition site by predatory hoverflies relies on the perception of a volatile blend composed of prey pheromone and typical plant green leaf volatiles.  相似文献   

14.
Volatile compounds released by disturbed and calm female and male Lygus lineolaris were collected and analyzed. Six major compounds were present in samples from disturbed bugs and from calm females: (E)-2-hexenal, 1-hexanol, (E)-2-hexenol, hexyl butyrate, (E)-2-hexenyl butyrate, and (E)-2,4-oxohexenal. (E)-2-hexenal was lacking in volatiles collected from calm males. Hexyl butyrate accounted for approximately 68% and 66% of volatiles released by agitated and calm females, and 87% and 88% of volatiles released by agitated and calm males, respectively. Blends released by disturbed insects differed quantitatively from blends released by calm insects, with amounts of compounds increasing 75–350 times in samples from disturbed insects. In static air bioassays, both females and males were repelled by natural volatiles collected from females and by five-component [(E)-2,4-oxohexenal excluded] and six-component synthetic blends at doses of 1 and 10 bug-hours, indicating that these volatiles may serve an alarm or epideictic function, as well as a possible role as defensive allomones. Adults also avoided hexyl butyrate, (E)-2-hexenyl butyrate, (E)-2-hexenol, and (E)-2,4-oxohexenal, but not 1-hexanol and (E)-2-hexenal when compounds were assayed individually in static air bioassays at doses equal to 1 bug-hour. When tested over 1 day in two-choice cage trials, adults did not prefer untreated bean plants over bean plants surrounded by vials releasing up to 8.1 mg/hr (=234 bug-hours) of the five-component synthetic blend. Therefore, the volatiles produced by disturbed adults would not be useful as a repellent for L. lineolaris.  相似文献   

15.
The Ethiopian fruit fly, Dacus ciliatus, is an oligophagous pest of cucurbit crops, particularly melons, cucumbers, and marrows (summer squash). The present study aimed to identify host attractants for D. ciliatus and was guided by a behavioral bioassay and an electrophysiological assay. We tested volatile compounds from the fruits of a host plant, ripe and unripe Galia melon, Cucumis melo var. reticulates. Both sexes were attracted to melon volatiles. Those of ripe melon were preferred. Gas chromatography-electroantennographic detection analysis of the behaviorally active ripe melon volatiles consistently showed that 14 compounds elicited similar antennal responses from both sexes. Twelve compounds were identified by gas chromatography-mass spectrometry (GC-MS) using GC-MS libraries, retention indices (RI), and authentic standards. The electrophysiological activities of the compounds that were present at sufficient levels for identification, benzyl acetate, hexanyl acetate, (Z)-3-hexenyl acetate, (Z)-3-octenyl acetate, octanyl acetate, (Z)-3-decenyl acetate, and (E)-β-farnesene, were evaluated at six different dosage levels by using electroantennography (EAG). Benzyl and hexanyl acetates elicited dose responses only in males, while other tested compounds elicited dose responses in both sexes. The strongest responses were observed for doses between 100 ng and 10 μg. The dose response, in terms of attractiveness to synthetic compounds within the active range (as determined by EAG), also was evaluated in the behavioral bioassay. Synthetic acetates were attractive to both sexes when tested individually. Significant attraction was observed when individual compounds were applied in the bioassay arena at doses of 0.5–1 μg/dispenser. Blends of compounds in equal proportions also were attractive to the insects. The most attractive blend was a mixture of four or five identified acetates. The addition of an equal proportion of (E)-β-farnesene to this mixture had a deterrent effect.  相似文献   

16.
Analyses of volatiles emitted from artificially damaged leaves attached to branches of seven Magnolia taxa revealed the presence of (Z)-3-hexenyl acetate, (Z)-3-hexenol (the green odor compounds), and several mono- and sesquiterpenes, e.g., (Z)- and (E)-β-ocimene and caryophyllene. An herbivore-induced leaf volatile, (E)-4,8-dimethyl-1,3,7-nonatriene, known as a predator attractant in agricultural plants, was emitted 4–6 hr after leaves were damaged in M. hypoleuca. The damaged leaves of M. grandiflora, however, immediately released (E)-4,8-dimethyl-1,3,7-nonatriene. Undamaged leaves of Magnolia species examined did not emit volatile compounds. In addition, detached flowers of six Magnolia taxa and Liriodendron tulipifera also emit (E)-4,8-dimemyl-1,3,7-nonatriene as a floral volatile (up to 30% in some species); the chemical was also emitted from the intact flowers of M. heptapeta and M. salicifolia.  相似文献   

17.
Plant volatiles from cabbage and chrysanthemum were studied as to how they affect behavior of the cabbage moth, Mamestra brassicae (L.). Chemical, electrophysiological, and behavioral techniques were used. The electroantennographic (EAG) evaluation of selected compounds from Brassi-caceae showed that isothiocyanates (NCS) elicited weak responses, and some did not evoke significant EAG responses at all. Green leaf volatiles (GLVs) evoked the strongest responses in both male and female antennae. The capacity of NCS to stimulate upwind flight of mated females was not different at doses of 10–7, 10–6, or 10–5 g when tested in a wind tunnel. At the higher doses, allyl NCS stimulated upwind flight in the females more than the other compounds. Allyl NCS was significantly better than the other compounds at stimulating females to land on targets. Mated females flew upwind and landed on the targets with allyl NCS more often than virgin females and males. With respect to the behavioral activity of GLVs, only (E)-2-hexenal and (Z)-3-hexenyl acetate elicited upwind flight and landing in females. Ten compounds were identified from a chrysanthemum extract by using coupled gas chromatography–electroantennography. Five of these, (Z)-3-hexenyl acetate, 1-8-cineole, -terpinene, chrysanthenone, and camphor, elicited upwind flight of mated females, but only three stimulated landing.  相似文献   

18.
The synthetic aggregation pheromone of the large milkweed bug, Oncopeltus fasciatus (Dallas) (Lygaeinae), also attracted males of the plant bug, Phytocoris difficilis Knight (Miridae). Field testing partial blends against the six-component blend comprising the Oncopeltus pheromone showed that cross-attraction of P. difficilis males was due to synergism between (E)-2-octenyl acetate and (E,E)-2,4-hexadienyl acetate. Hexyl acetate was abundant in the metathoracic scent gland (MSG) secretion of P. difficilis males, but because female P. difficilis could not initially be found in the field, further combinatorial tests were guided by prior research on the pheromones of two Phytocoris species in the western United States. The combination of hexyl, (E)-2-hexenyl, and (E)-2-octenyl acetates was as attractive to P. difficilis males as the milkweed bug pheromone, yet no milkweed bugs were drawn to this blend. Gas chromatographic (GC)-electroantennographic detection (EAD) and GC-mass spectrometric (MS) analyses of female P. difficilis MSGs determined that their secretion contained predominantly hexyl, (E)-2-hexenyl, and (E)-2-octenyl acetates (all strongly EAD-active)—the latter two compounds found only in trace amounts from males—plus five minor female-specific compounds, three of which were EAD-active. (E,E)-2,4-Hexadienyl acetate was not detected from P. difficilis females or males. The blend of the three major components, hexyl, (E)-2-hexenyl, and (E)-2-octenyl acetates (2:1.5:1 by volume), was as attractive as the blend of all six EAD-active compounds identified from females, indicating that this ternary blend constitutes the sex pheromone of P. difficilis. Hexyl acetate with (E)-2-octenyl acetate also attracted males of another species, P. breviusculus Reuter, but addition of (E)-2-hexenyl acetate and/or (E,E)-2,4-hexadienyl acetate inhibited attraction of P. breviusculus males. Attraction of P. difficilis males occurred mainly during the first half of scotophase. The possible neurophysiological basis for this asymmetrical cross-attraction is discussed.  相似文献   

19.
Several studies have shown intraspecific geographical variation in the composition of sex pheromones. Pheromone lures from North America and Europe were not effective against the fall armyworm Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) in Brazil, so we examined the composition of the sex pheromone produced by females from Brazilian populations. Virgin female gland extracts contained (Z)-7-dodecenyl acetate (Z7-12:Ac), (E)-7-dodecenyl acetate (E7-12:Ac), dodecyl acetate, (Z)-9-dodecenyl acetate, (Z)-9-tetradecenyl acetate (Z9-14:Ac), (Z)-10-tetradecenyl acetate, tetradecyl acetate/(Z)-11-tetradecenyl acetate (Z11-16:Ac), and (Z)-11-hexadecenyl acetate. The relative proportions of each acetate were 0.8:1.2:0.6:traces:82.8:0.3:1.5:12.9, respectively. This is the first time that E7-12:Ac has been reported from the pheromone gland of S. frugiperda. Only three compounds, Z9-14:Ac, Z7-12:Ac, and E7-12:Ac, elicited antennal responses, and there were no differences in catch between traps baited with either Z7-12:Ac + Z9-14:Ac or Z7-12:Ac + Z9-14:Ac + Z11-16:Ac blends. However, the Z7-12:Ac + Z9-14:Ac + E7-12:Ac blend was significantly better than Z7-12:Ac + Z9-14:Ac, indicating that E7-12:Ac is an active component in the sex pheromone of the Brazilian populations of S. frugiperda.  相似文献   

20.
Pristhesancus plagipennis, a large Australian assassin bug, possesses three pairs of dorsal abdominal glands (DAGs). In the male, the anterior and posterior glands are hypertrophied and secrete an attractant pheromone. Gas chromatography-mass spectrometry (GC-MS) analyses of male DAG extracts and airborne volatiles emitted from calling males showed the pheromone signature to be dominated by a novel component. Subsequent chemical manipulations, GC-MS, and chiral-column analyses established its identity as (Z)-3-hexenyl (R)-2-hydroxy-3-methylbutyrate. Minor components included 3-methylbutanol, 2-phenylethanol, (Z)-3-hexenol, decanal, (E)-2-hexenoic acid, and three minor hexenyl esters. Bioactivity studies using laboratory olfactometers and outdoor flight cages demonstrated attraction by femaleP. plagipennis to calling males, heptane extracts of male posterior DAGs and a synthetic formulation of the (Z)R enantiomer of the major ester, alone or in combination with other components of male anterior and posterior DAGs. Males were also attracted to the major ester. The racemate andS enantiomer of the ester were not attractive. Contamination of the (Z)R enantiomer with 30–60% of theE isomer also made the compound nonattractive. This is the first report of an aggregation pheromone in the Reduviidae. The prospects for pheromonal manipulation ofP. plagipennis populations to enhance the value of this predator in horticultural ecosystems, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号