首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The phase relationships of the Cu-Ti-Er ternary phase diagram at 773?K (500?°C) were investigated mainly by means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), and differential thermal analysis (DTA). It is confirmed in this work that the binary compounds Cu9Er2 and Cu7Er2 exist in the Cu-Er binary system at 773?K (500?°C). The stability of the CuTi3 phase is confirmed in the Cu-Ti system. After heat treatment at 1023?K (750?°C) for 90 hours, the phase CuTi3 is observed in the microstructure of the alloy 25Cu75Ti. The temperature of the eutectoid transformation, namely, ??-Ti ? ??-Ti?+?CuTi3, is determined to be 1078?K (805?°C) in this work. The 773?K (500?°C) isothermal section consists of 14 single-phase regions, 25 two-phase regions, and 12 three-phase regions. None of the phases in this system reveals a remarkable homogeneity range at 773?K (500?°C).  相似文献   

2.
The effect of annealing temperature on the crystallinity, thermoelectric properties, and surface morphology of the Bi0.5Sb1.5Te3 thin films prepared on SiO2/Si substrate by radio-frequency (RF) magnetron sputtering was investigated using X-ray diffraction (XRD), the four-point probe method, and scanning electron microscopy (SEM). XRD results show that the crystallite structure of the Bi x Sb2–x Te3 thin films belong to Bi0.5Sb1.5Te3. When the Bi x Sb2–x Te3 thin films were annealed between 423 K and 523 K (150 °C and 250 °C) for 10  minutes, the crystallinity of the thin films continuously increases with the temperature increase. In addition, the (015) reflection plane as the preferred orientation and the oxidation compound of Bi3.73Sb1.5O3 first appeared when the Bi0.5Sb1.5Te3 thin films were annealed at 523 K (250 °C) for 10 minutes. An activation energy of 51.66 kJ/mol for crystallite growth of Bi0.5Sb1.5Te3 thin films annealed between 423 K and 523 K (150 °C and 250 °C) for 10 minutes was obtained. The resistivity was 2.69 × 102 and 5.93 × 10  μΩ·m, respectively, for the as-deposited Bi0.5Sb1.5Te3 thin films and annealed at 523 K (250 °C) for 10 minutes. The maximum values of the Seebeck coefficient and power factor were 256.5 μV/K and 1.12 × 103 μW/m·K2, respectively, for the Bi0.5Sb1.5Te3 thin films annealing treatment at 523 K (250 °C) for 10 minutes.  相似文献   

3.
Using transmission electron microscopy, Mössbauer spectroscopy, and measurements of hardness, the carbide precipitation during tempering of steel X153CrMoV12 containing (mass pct) 1.55C, 11.90Cr, 0.70V, and 0.86Mo is studied after three treatments: quenching at RT and deep cryogenic treatment, DCT, at 77 K or 123 K (?196 °C or ?150 °C). In contrast to some previous studies, no fine carbide precipitation after long-time holding at cryogenic temperatures is detected. After quenching at room temperature, RT, the transient ε(ε′) carbide is precipitated between 373 K and 473 K (100 °C and 200 °C) and transformed to cementite starting from 573 K (300 °C). In case of DCT at 123 K (?150 °C), only fine cementite particles are detected after tempering at 373 K (200 °C) with their delayed coarsening at higher temperatures. Dissolution of cementite and precipitation of alloying element carbides proceed at 773 K (500 °C) after quenching at RT, although some undissolved cementite plates can also be observed. After DCT at 123 K (?150 °C), the transient ε(ε′) carbide is not precipitated during tempering, which is attributed to the intensive isothermal martensitic transformation accompanied by plastic deformation. In this case, cementite is the only carbide phase precipitated in the temperature range of 573 K to 773 K (300 °C to 500 °C). If DCT is carried out at 77 K (?196 °C), the ε(ε′) carbide is found after tempering at 373 K to 473 K (100 °C to 200 °C). Coarse cementite particles and the absence of alloying element carbides constitute a feature of steel subjected to DCT and tempering at 773 K (500 °C). As a result, a decreased secondary hardness is obtained in comparison with the steel quenched at RT. According to Mössbauer studies, the structure after DCT and tempering at 773 K (500 °C) is characterized by the decreased fraction of the retained austenite and clustering of alloying elements in the α solid solution. It is suggested that a competition between the strain-induced transformation of the retained austenite and carbide precipitation during the wear can control the life of steel tools.  相似文献   

4.
Aberration-corrected scanning transmission electron microscopy (AC-STEM), X-ray diffraction (XRD), electron backscatter diffraction, and electron probe microanalysis were applied to characterize continuous and discontinuous phase formation in precious metal alloys used in electrical contacts. The Pd-rich Paliney® (®Paliney is tradename of Deringer-Ney Inc., Bloomfield, CT) alloys contain Pd, Ag, Cu, Au, Pt (and Zn or Ni). With aging at 755 K (482 °C), nanometer-scale chemistry modulation was observed indicating spinodal decomposition. An ordered body-centered tetragonal (bct) structure was also observed with AC-STEM after the 755 K (482 °C) aging treatment and another phase, tentatively identified as β-Cu3Pd4Zn, was found by microscopy and XRD after prolonged holds at higher temperatures. During slow cooling or isothermal holds at high temperature [755 K to 973 K (482 °C to 700 °C)], a two-phase lamellar structure develops along grain boundaries by discontinuous precipitation. XRD and AC-STEM showed that the lamellar structure was comprised of Ag-rich and Cu-rich fcc phases (α 1 and α 2). The phases are discussed in relation to a pseudo-ternary diagram based on Ag-Cu-Pd, which provides a simplified representation of the discontinuous phase compositions in the multi-component alloy system.  相似文献   

5.
The phase diagram of the barium sulfide-copper(I) sulfide system was investigated above 873 K (600 °C) using a custom-built differential thermal analysis (DTA) apparatus. The melting point of barium sulfide was determined utilizing a floating zone furnace. Four new compounds, Ba2Cu14S9, Ba2Cu2S3, Ba5Cu4S7, and Ba9Cu2S10, were identified through quench experiments analyzed with wavelength dispersive X-ray spectroscopy (WDS) and energy dispersive X-ray analysis (EDS). A miscibility gap was observed between 72 and 92 mol pct BaS using both DTA experiments and in situ melts observation in a floating zone furnace. A monotectic was observed at 94.5 mol pct BaS and 1288 K (1015 °C).  相似文献   

6.
The liquidus projection of the U-rich corner of the B-Fe-U phase diagram is proposed based on X-ray powder diffraction measurements, differential thermal analysis, and scanning electron microscopy observations complemented with energy- and wavelength-dispersive X-ray spectroscopies. Two ternary reactions in this U-rich region were observed and their approximate temperatures were established. In addition, an overview of the complete phase diagram is given, including the liquidus projection; isothermal sections at 1053 K, 1223 K, and 1373 K (780 °C, 950 °C, and 1100 °C); and a U:(Fe,B) = 1:5 isopleth.  相似文献   

7.
8.
Homogeneous precipitation of a fine α phase in the β matrix of Ti alloys is a promising method for obtaining a highly strengthened Ti-based alloy. Isothermal ω particles are known to be the nucleation sites for fine α-phase precipitation, but an understanding of the kinetics of α-phase formation on isothermal ω particles is still lacking. This study aimed to reveal the effect of isothermal ω particles on α-phase precipitation onset time. Two-step isothermal aging of a Ti-20 at.pct Nb alloy after solid solution treatment at 1273 K (1000 °C) was carried out. The first step of the aging at 633 K (360 °C) involved the formation of isothermal ω particles in the β matrix. This was followed by a second aging step at 673 K, 723 K, and 773 K (400 °C, 450 °C, and 500 °C) for α-phase precipitation. Suppression of α-phase nucleation on the isothermal ω particles occurred at 673 K (400 °C), whereas acceleration of α-phase nucleation on the isothermal ω particles was observed at 723 K and 773 K (450 °C and 500 °C). Thermodynamic stability of the isothermal ω particles and solute partitioning were controlling factors for the α-phase precipitation kinetics.  相似文献   

9.
TiO2 freeze-dried precursor powders were synthesized using a coprecipitation route that includes titanium tetrachloride (TiCl4) as initial material prepared at 348 K (75 °C) and pH 7. Differential scanning calorimetry/thermogravimetry (DSC/TG), X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) and high resolution TEM were utilized to characterize the thermal behavior and phase transformation of the TiO2 freeze-dried precursor powders after calcination. The main compound of the TiO2 freeze-dried precursor powders was TiO2·H2O based on a TG analysis conducted at a heating rate of 20 K (20 °C)/min. The anatase TiO2 (a-TiO2) first appeared at 473 K (200 °C), then from a-TiO2 transformed to rutile TiO2 (r-TiO2) at 773 K (500 °C). The activation energy of a-TiO2 formation from TiO2 freeze-dried precursor powders was 242.4 ± 33.9 kJ/mol, whereas, the activation energy of phase transformation from a-TiO2 to r-TiO2 was 267.5 ± 19.1 kJ/mol. The crystallite size of a-TiO2 grew from 3.5 to 23.2 nm when raising the calcination temperature from 473 K to 873 K (200 °C to 600 °C). In addition, the crystallite size of r-TiO2 increased from 17.4 to 48.1 nm when calcination temperature increased from 773 K to 1073 K (500 °C to 800 °C).  相似文献   

10.
Samples of Hot Isostatically Pressed (HIPped) powder of TIMETAL 6-4 (Ti-6Al-4V, compositions in wt pct unless indicated), which was HIPped at 1203 K (930 °C), and of forged bar stock, which was slowly cooled from above the beta transus, were both subsequently held at 773 K (500 °C) for times up to 5 weeks and analyzed using scanning and transmission electron microscopy and atom probe analysis. It has been shown that in the samples aged for 5 weeks at 773 K (500 °C), there is a high density of alpha2 (α2, an ordered phase based on the composition Ti3Al) precipitates, which are typically 5 nm in size, and a significantly smaller density was present in the slowly cooled samples. The fatigue and tensile properties of samples aged for 5 weeks at 773 K (500 °C) have been compared with those of the HIPped powder and of the forged samples which were slowly cooled from just above the transus, and although no significant difference was found between the fatigue properties, the tensile strength of the aged samples was 5 pct higher than that of the as-HIPped and slowly cooled forged samples. The ductility of the forged samples did not decrease after aging at 773 K (500 °C) despite the strength increase. Transmission electron microscopy has been used to assess the nature of dislocations generated during tensile and fatigue deformation and it has been found that not just is planar slip observed, but dislocation pairs are not uncommon in samples aged at 773 K (500 °C) and some are seen in slowly cooled Ti6Al4V.  相似文献   

11.
The compressive response of martensitic NiTi shape memory alloy (SMA) rods has been investigated using a modified Kolsky compression bar at various strain rates (400, 800, and 1200 s?1) and temperatures [room temperature and 373 K (100 °C)], i.e., in the martensitic state and in the austenitic state. SEM, DSC, and XRD were performed on NiTi SMA rod samples after high strain rate compression in order to reveal the influence of strain rate and temperature on the microstructural evolution, phase transformation, and crystal structure. It is found that at room temperature, the critical stress increases slightly as strain rate increases, whereas the strain-hardening rate decreases. However, the critical stress under high strain rate compression at 373 K (100 °C) increase first and then decrease due to competing strain hardening and thermal softening effects. After high rate compression, the microstructure of both martensitic and austenitic NiTi SMAs changes as a function of increasing strain rate, while the phase transformation after deformation is independent of the strain rate at room temperature and 373 K (100 °C). The preferred crystal plane of the martensitic NiTi SMA changes from (\( 1\bar{1}1 \))M before compression to (111)M after compression, while the preferred plane remains the same for austenitic NiTi SMA before and after compression. Additionally, dynamic recovery and recrystallization are also observed to occur after deformation of the austenitic NiTi SMA at 373 K (100 °C). The findings presented here extend the basic understanding of the deformation behavior of NiTi SMAs and its relation to microstructure, phase transformation, and crystal structure, especially at high strain rates.  相似文献   

12.
The removal of As, Sb, and Bi impurities from copper electrolyte is a primary objective of copper electrorefineries. The present experimental work demonstrates that the presence of Sb2O3 facilitates efficient and fast removal these impurities (with removal rates of 38.50, 98.50, and 99.00% for As, Sb, and Bi) through the formation of antimonate (AsSbO4/Sb2O4/BiSbO4), which plays a critical role in the self-purification of copper electrolyte. However, the antimonate which is a valuable metallurgical by-product contained high contents of As and Sb. The thermal decomposition of the antimonate was characterized by TG/DTA, a new method was proposed for recovering the target components, As, Sb, Bi, and to regenerate Sb2O3 with a two-stage roasting process under argon atmosphere. According to the results of XRD, SEM-EDS and ICP-MS, AsSbO4 decomposed during the first stage roasting at 800°C over 2 h, affording As with a recovery rate of 98.80%. During the second stage, decomposition of BiSbO4 and Sb2O4 at 1200°C over 2 h resulted in 99.01, 95.14% recovery rates for Sb, Bi.  相似文献   

13.
Sn-Co-Cu ternary alloys are promising lead-free solders, and isothermal sections of Sn-Co-Cu phase equilibria are fundamentally important for the alloys?? development and applications. Sn-Co-Cu ternary alloys were prepared and equilibrated at 523?K, 1073?K, and 1273?K (250?°C, 800?°C, and 1000?°C), and the equilibrium phases were experimentally determined. In addition to the terminal solid solutions and binary intermetallic compounds, a new ternary compound, Sn3Co2Cu8, was found. The solubilities of Cu in the ??-CoSn3 and CoSn2 phases at 523?K (250?°C) are 4.2 and 1.6?at. pct, respectively, while the Cu solubility in the ??-Co3Sn2 phase is as high as 20.0?at. pct. The Cu solubility increases with temperature and is around 30.0?at. pct in the ??-Co3Sn2?at 1073?K (800?°C). The Co solubility in the ??-Cu6Sn5 phase is also significant and is 15.5?at. pct at 523?K (250?°C).  相似文献   

14.
In this study, isothermal reaction behavior of loose NiO powder in a flowing undiluted CH4 atmosphere at the temperature range 1000 K to 1300 K (727 °C to 1027 °C) is investigated. Thermodynamic analyses at this temperature range revealed that single phase Ni forms at the input \( {{n_{{{\text{CH}}_{ 4} }}^{\text{o}} } \mathord{\left/ {\vphantom {{n_{{{\text{CH}}_{ 4} }}^{\text{o}} } {\left( {n_{{{\text{CH}}_{ 4} }}^{\text{o}} + n_{\text{NiO}}^{\text{o}} } \right)}}} \right. \kern-0pt} {\left( {n_{{{\text{CH}}_{ 4} }}^{\text{o}} + n_{\text{NiO}}^{\text{o}} } \right)}} \) mole fractions (\( X_{{{\text{CH}}_{ 4} }} \)) between ~0.2 and 0.5. It was also predicted that free C co-exists with Ni at \( X_{{{\text{CH}}_{ 4} }} \) values higher than ~0.5. The experiments were carried out as a function of temperature, time, and CH4 flow rate. Mass measurement, XRD and SEM-EDX were used to characterize the products at various stages of the reaction. At 1200 K and 1300 K (927 °C and 1027 °C), the reaction of NiO with undiluted CH4 essentially consisted of two successive distinct stages: NiO reduction and pyrolytic C deposition on pre-reduced Ni particles. At 1200 K (927 °C), 1100 K (827 °C), and 1000 K (727 °C), complete oxide reduction was observed within ~7.5, ~17.5, and ~45 minutes, respectively. It was suggested that NiO was essentially reduced to Ni by a CH4 decomposition product, H2. Possible reactions leading to NiO reduction were suggested. An attempt was made to describe the NiO reduction kinetics using nucleation-growth and geometrical contraction models. It was observed that the extent of NiO reduction and free C deposition increased with the square root of CH4 flow rate as predicted by a mass transport theory. A mixed controlling mechanism, partly chemical kinetics and partly external gaseous mass transfer, was responsible for the overall reaction rate. The present study demonstrated that the extent of the reduction can be determined quantitatively using the XRD patterns and also using a formula theoretically derived from the basic XRD data.  相似文献   

15.
Dry sliding wear tests were performed for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy against AISI 52100 steel under the loads of 50 to 250 N at 298 K to 873 K (25 °C to 600 °C). The wear behavior of the alloy varied with the change of test conditions. More or less tribo-oxides TiOand Fe2O3 formed on worn surfaces under various conditions. At lower temperature [298 K to 473 K (25 °C to 200 °C)], less and scattered tribo-oxide layers did not show wear-reduced effect. As more number of and continuous tribo-oxide layers appeared at higher temperatures [773 K to 873 K (500 °C to 600 °C)], the wear rate would be substantially reduced. It can be suggested that Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy possessed excellent wear resistance at 773 K to 873 K (500 °C to 600 °C). The wear-reduced effect of tribo-oxides seemed to depend on the appearance of Fe2Oand the amount of tribo-oxides.  相似文献   

16.
The isothermal section of the phase diagram of the Gd-Sm-Co ternary system at 773K was investigated by X-ray powder diffraction(XRD),differential thermal analysis(DTA),optical microscopy and scanning electron microscopy(SEM) techniques.The result shows that the isothermal section consists of 12 single-phase regions,16 two-phase regions and 5 three-phase regions.Five pairs of corresponding compounds of Gd-Co and Sm-Co systems,i.e.,Gd2Co17 and Sm2Co17,Gd2Co7 and Sm2Co7,GdCo3 and SmCo3,GdCo2 and SmCo2,Gd3Co and SmCo form continuous series of solid solutions.The maximum solid solubility of Sm in Gd 4Co3 and Gd12Co7 were about 7.2 at.% and 47.8 at.% Sm,respectively.The maximum solid solubility of Gd in Sm5Co19 and Sm5Co2 were about 4.7 at.% and 7.6 at.% Gd,respectively.The binary compounds Sm9Co4,GdCo5 and SmCo5 were not observed at 773K.No ternary compound was found.  相似文献   

17.
The isothermal section of the Ce-Mg-Mn phase diagram at 723 K (450 °C) was established experimentally by means of diffusion couples and key alloys. The phase relationships in the complete composition range were determined based on six solid–solid diffusion couples and twelve annealed key alloys. No ternary compounds were found in the Ce-Mg-Mn system at 723 K (450 °C). X-ray diffraction and energy-dispersive X-ray spectroscopy spot analyses were used for phase identification. EDS line-scans, across the diffusion layers, were performed to determine the binary and ternary homogeneity ranges. Mn was observed in the diffusion couples and key alloys microstructures as either a solute element in the Ce-Mg compounds or as a pure element, because it has no tendency to form intermetallic compounds with either Ce or Mg. The fast at. interdiffusion of Ce and Mg produces several binary compounds (Ce x Mg y ) during the diffusion process. Thus, the diffusion layers formed in the ternary diffusion couples were similar to those in the Ce-Mg binary diffusion couples, except that the ternary diffusion couples contain layers of Ce-Mg compounds that dissolve certain amount of Mn. Also, the ternary diffusion couples showed layers containing islands of pure Mn distributed in most diffusion zones. As a result, the phase boundary lines were pointing toward Mn-rich corner, which supports the tendency of Mn to be in equilibrium with all the phases in the system.  相似文献   

18.
Ni-49Ti and Ni-30Pt-50Ti (nominal at. pct) shape memory alloys (SMAs) were isothermally oxidized in air over the temperature range of 773?K to 1173?K (500?°C to 900?°C) for 100?hours. The oxidation kinetics, presented in detail in a companion study, show ~4 times reduction in oxidation rate due to Pt.[1] The microstructure, composition, and phase content of the scales and depletion zones were determined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). A relatively pure TiO2 rutile structure was identified as the predominant scale surface feature, typified by a distinct highly striated and faceted crystal morphology, with crystal size proportional to oxidation temperature. The complex layered structure beneath these crystals was characterized by semiquantitative XRD of serial/taper polished sections and SEM/EDS of cross sections for samples oxidized at 973?K (700?°C). In general, graded mixtures of TiO2, NiTiO3, NiO, Ni(Ti), or Pt(Ni) metallic dispersoids, and continuous Ni3Ti or Pt-rich metal depletion zones, were observed from the gas surface to the substrate interior. Overall, substantial depletion of Ti occurred due to the formation of predominantly TiO2 scales. It is proposed that the Ni-30Pt-50Ti alloy oxidized more slowly than the binary Ni-49Ti alloy by decreasing oxygen and titanium diffusion through the thin Pt-rich layer.  相似文献   

19.
The isothermal sections of the phase diagram of the Zr–Si–RE (RE=La and Er) systems at 773 K (500 °C) have been investigated using X-ray power diffraction (XRD), scanning electron microscopy (SEM), and optical microscopy (OM) with the aid of metallographic analysis. The existences of 10 binary compounds, namely ZrSi2, α-ZrSi, α-Zr5Si4, Zr3Si2, Zr2Si, RESi2, RESi2–x , RESi, RE5Si4, and RE5Si3 have been confirmed in the Zr–Si–RE (RE=La and Er) systems, respectively. As for the reported binary compound RE3Si2, only La3Si2 has been observed in the Zr–Si–La system, whereas Er3Si2 was not found. No binary compound was found in the Zr–RE binary systems, and no ternary compound was found in the current ternary systems. None of the phases in Zr–Si–La system reveals a remarkable solid solution at 773 K (500 °C). However, the maximum solid solubility of Zr in Er, Er5Si3, Er5Si4, ErSi, ErSi1.67, and ErSi2 is determined to be approximately 12.0 at. pct, 2.4 at. pct, 3.0 at. pct, 3.3 at. pct, 2.2 at. pct, and 1.8 at. pct, respectively. The maximum solid solubility of Er in ErSi2 is approximately 1.8 at. pct. No remarkable solid solubility of the elements in any of the other phases has been observed.  相似文献   

20.
In the current work, silicide coatings were produced on the Nb alloy (Nb-1 pct Zr-0.1 pct C) using the halide activated pack cementation (HAPC) technique. Coating parameters (temperature and time) were optimized to produce a two-layer (Nb5Si3 and NbSi2) coating on the Nb alloy. Subsequently, the oxidation behavior of the Nb alloy (Nb-1 pct Zr-0.1 pct C) and silicide-coated Nb alloy was studied using thermogravimetric analysis (TGA) and isothermal weight gain oxidation experiments. Phase identification and morphological examinations were carried out using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. TGA showed that the Nb alloy started undergoing accelerated oxidation at and above 773 K (500 °C). Isothermal weight gain experiments carried out on the Nb alloy under air environment at 873 K (600 °C) up to a time period of 16 hours exhibited a linear growth rate law of oxidation. In the case of silicide-based coatings, TGA showed that oxidation resistance of silicide coatings was retained up to 1473 K (1200 °C). Isothermal weight gain experiments on the silicide coatings carried out at 1273 K (1000 °C) in air showed that initially up to 8 hours, the weight of the sample increased, and beyond 8 hours the weight of the sample remained constant. The oxide phases formed on the bare samples and on the coated samples during oxidation were found to be Nb2O5 and a mixture of SiO2 and Nb2O5 phases, respectively. SEM showed the formation of nonprotective oxide layer on the bare Nb alloy and a protective (adherent, nonporous) oxide layer on silicide-coated samples. The formation of protective SiO2 layer on the silicide-coated samples greatly improved the oxidation resistance at higher temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号