首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influence of nitrogen content on low cycle fatigue life and fracture behavior of 316LN stainless steel (SS) alloyed with 0.07 to 0.22 wt pct nitrogen is presented in this paper over a range of total strain amplitudes (±0.25 to 1.0 pct) in the temperature range from 773 K to 873 K (500 °C to 600 °C). The combined effect of nitrogen and strain amplitude on fatigue life is observed to be complex i.e., fatigue life either decreases/increases with increase in nitrogen content or saturates/peaks at 0.14 wt pct N depending on strain amplitude and temperature. Coffin–Manson plots (CMPs) revealed both single-slope and dual-slope strain-life curves depending on the test temperature and nitrogen content. 316LN SS containing 0.07 and 0.22 wt pct N showed nearly single-slope CMP at all test temperatures, while 316LN SS with 0.11 and 0.14 wt pct N exhibited marked dual-slope behavior at 773 K (500 °C) that changes to single-slope behavior at 873 K (600 °C). The changes in slope of CMP are found to be in good correlation with deformation substructural changes.  相似文献   

2.
The relationship between cyclic deformation, slip-mode and dislocation structures is investigated in 316LN stainless steel (with 0.07–0.22 wt% Nitrogen) subjected to low cycle fatigue at temperatures in the range 300–873 K and at a 0.6 % strain amplitude. Irrespective of the nitrogen content, cyclic softening/saturation occupied a large fraction of fatigue life at temperatures <773 K. The end-of-life dislocation structures (e.g. dislocation cells, planar slip-bands) characterizing the cyclic softening/saturation belong to wavy/mixed/planar slip-modes of deformation. On the other hand at temperatures ≥773 K, similar dislocation structures are noticed to be associated with significant cyclic strengthening with limited softening. The differences in the above deformation behavior is found to be controlled not by the nature of slip-mode but by the consequences of dynamic strain aging occurrence (e.g. significant cyclic strengthening and pronounced serrations) which are noticed to vary in the temperature range 573–873 K. Maximum fatigue life is observed at 0.11–0.14 wt% N that induced mixed mode of deformation.  相似文献   

3.
In this article, the occurrence of secondary cyclic hardening (SCH) and its effect on high-temperature cyclic deformation and fatigue life of 316LN Stainless steel are presented. SCH is found to result from planar slip mode of deformation and enhance the degree of hardening over and above that resulted from dynamic strain aging. The occurrence of SCH is strongly governed by the applied strain amplitude, test temperature, and the nitrogen content in the 316LN SS. Under certain test conditions, SCH is noticed to decrease the low cycle fatigue life with the increasing nitrogen content.  相似文献   

4.
Cyclic creep behavior of a type 316LN austenitic stainless steel was investigated in the temperature range from 823 K to 923 K (550 °C to 650 °C). A transition from fatigue-dominated to creep-dominated failure mode was observed with an increase in the mean stress. The threshold value of mean stress for the transition was seen to be a strong function of the test temperature. Occurrence of dynamic strain aging proved beneficial owing to a substantial reduction in the strain accumulation during cyclic loading.  相似文献   

5.
This paper deals with the effect of nitrogen on the tensile and stress corrosion cracking (SCC) behavior of type 316LN stainless steel. Yield stress (YS) and ultimate tensile stress (UTS) increased while the ductility [% total elongation (% TE)] decreased with increasing nitrogen content. Evaluation by conventional assessment parameters, such as ratios of UTS, % TE and SCC susceptibility index, derived by SCC testing using the slow strain rate testing (SSRT) technique indicated an improvement in SCC resistance on increasing the nitrogen content. However, crack growth rates, calculated from ratios of fracture stress from the SSRT tests in liquid paraffin and boiling 45 % magnesium chloride in SSRT tests, and the constant load tests at loads corresponding to 20 % YS in boiling 45 % magnesium chloride conclusively established that the SCC resistance of type 316LN stainless steel decreased with increasing nitrogen content.  相似文献   

6.
Small punch creep (SPC) studies have been carried out to evaluate the creep properties of 316LN stainless steel (SS) at 923 K (650 °C) at various stress levels. The results have been compared with uniaxial creep rupture data obtained from conventional creep tests. The minimum deflection rate was found to obey Norton power law. SPC rupture life was correlated with uniaxial creep rupture life. The influence of nitrogen content on the creep rupture properties of 316LN SS was investigated in the range of 0.07 to 0.14 wt pct. SPC rupture life increased and the minimum deflection rate decreased with the increase in nitrogen content. The trends were found to be in agreement with the results obtained from uniaxial creep rupture tests. These studies have established that SPC is a fast and reliable technique to screen creep properties of different experimental heats of materials for optimizing the chemical composition for developing creep-resistant materials.  相似文献   

7.
Tensile tests were performed at strain rates ranging from 3.16 × 10?5 to 3.16 × 10?3 s?1 over the temperatures ranging from 300 K to 1123 K (27 °C to 850 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of nitrogen-alloyed low carbon grade type 316L(N) austenitic stainless steel. The variations of flow stress/strength values, work hardening rate, and tensile ductility with respect to temperature exhibited distinct three temperature regimes. The steel exhibited distinct low- and high-temperature serrated flow regimes and anomalous variations in terms of plateaus/peaks in flow stress/strength values and work hardening rate, negative strain rate sensitivity, and ductility minima at intermediate temperatures. The fracture mode remained transgranular. At high temperatures, the dominance of dynamic recovery is reflected in the rapid decrease in flow stress/strength values, work hardening rate, and increase in ductility with the increasing temperature and the decreasing strain rate.  相似文献   

8.
The static recrystallization of 316LN austenitic stainless steel was studied by double-pass hot compression tests on a Gleeble-3500 thermomechanical simulator. The specimens were compressed at the deformation temperatures of 950, 1050, 1150 °C, strain rates of 0.01, 0.1, 1s?1, strains of 0.1, 0.15, 0.2, and intervals of 1 — 100 s. The results show that the volume fraction of static recrystallization of 316LN increases with the increase of deformation temperature, strain rate, strain and interval, which indicates that static recrystallization occurs easily under the conditions of higher deformation temperature, higher strain rate and larger strain. Deformation temperature has significant influence on static recrystallization of 316LN. The volume fraction of static recrystallization could easily reach 100% at higher deformation temperatures. By microstructure analysis, it can be concluded that the larger the volume fraction of static recrystallization, the more obvious the grain refinement. The static recrystallization activation energy of 317 882 J/mol and the exponent n of 0.46 were obtained. The static recrystallization kinetics was established. The predicted volume fraction of static recrystallization is in good agreement with the experimental results.  相似文献   

9.
To understand the flow behavior of a newly developed austenitic stainless steel 316LN with 0.14 wt% nitrogen, isothermal compression tests have been carried out in the hot working domain. From the analysis of flow behavior, it is observed that the nitrogen enhanced steel, in its hot working domain exhibits strain and strain rate hardening with thermal softening. The flow behavior analysis also demonstrates the coupled effect of strain–temperature and strain rate temperature on the flow stress. To depict the flow behavior of the material, strain compensated Arrhenius (SCA) equation and Model D8A have been used. The SCA predicts the flow curves with an average absolute error of 9.27% and a correlation coefficient of 0.977, whereas the prediction by Model D8A gives the average absolute relative error as 10.86% with a correlation coefficient of 0.966. For high temperature and intermediate strain rate, both Model D8A and SCA equation depict the flow behavior of 316L (0.14)N SS with good correlation and generalization. However, at low temperature and high strain rate domain, both the models are unable to depict the behavior; this is attributed to the fact that the material shows two slope behaviors where the constants have been calculated assuming a linear relationship between stress and strain rate.  相似文献   

10.
The effects of temperature and strain rate on deformation behavior and dislocation structure were investigated for OFHC copper and type 304 stainless steel. It is shown that the cyclic stress response is inversely related to the cell size for copper cycled at different temperatures ranging from -75 to 650°C. Type 304 stainless steel underwent a change from a planar to a wavy slip character as the temperature was changed from room temperature to 760°C. At elevated temperatures, cells were observed and the size of the cells tended to increase with increase in temperature. The effects of temperature on the cyclic stress-strain parameters were investigated for copper, type 304 stainless steel and Ferrovac “E” iron. On studying the effects of temperature and strain rate on the fracture mechanisms it was found that a time dependent fracture mode was dominant at high temperature levels and low strain rates. However, at high strain rates the life was insensitive to temperature. The role of grain boundary migration on the fracture process was investigated. Grain boundary migration was found to be dependent on strain rate for copper. However, for type 304 stainless steel, the grain boundary migration was inhibited at high temperature (760°C) due to the presence of precipitates at the grain boundaries. In strain cycling of OFHC copper and type 304 stainless steel, it was found that the addition of creep-type damage to fatigue damage resulted in a total damage which was not equal to unity for failure when these different modes were imposed sequentially. The sense of the damage accumulation appeared to have no effect on this summation.  相似文献   

11.
The influence of cold work (prestraining) in the range 2.3 to 56 pct on stress corrosion cracking (SCC) properties of types 304 and 316 stainless steels in boiling MgCl2 solution at 154 °C was investigated using a constant load method. In both materials, SCC initiation was in transgranular mode. Transition in stress corrosion cracking mode from transgranular to intergranular, as the crack proceeds, was observed at all cold work levels in 316 stainless steel and at cold work levels of 26 pct and 56 pct in 304 stainless steel. Both prestraining and increase in the initial applied stress facilitated the transition in crack morphology to intergranular mode. Increased tendency to intergranular SCC at high applied stresses and in cold worked specimens appears to be mechanistically analogous.  相似文献   

12.
The influence of cold work (prestraining) in the range 2.3 to 56 pct on stress corrosion cracking (SCC) properties of types 304 and 316 stainless steels in boiling MgCl2 solution at 154 °C was investigated using a constant load method. In both materials, SCC initiation was in transgranular mode. Transition in stress corrosion cracking mode from transgranular to intergranular, as the crack proceeds, was observed at all cold work levels in 316 stainless steel and at cold work levels of 26 pct and 56 pct in 304 stainless steel. Both prestraining and increase in the initial applied stress facilitated the transition in crack morphology to intergranular mode. Increased tendency to intergranular SCC at high applied stresses and in cold worked specimens appears to be mechanistically analogous.  相似文献   

13.
Nitrogen-alloyed 316LN stainless steel is used as a structural material for high temperature fast breeder reactor components. With a view to increase the design life of the components up to 60 years and beyond, studies are being carried out to develop nitrogen alloyed 316LN stainless steel with superior tensile, creep and low cycle fatigue properties. This paper presents the results from studies on the influence of nitrogen on the high temperature creep properties of this material. The influence of nitrogen on the creep behaviour of 316LN stainless steel has been studied at nitrogen levels of 0.07, 0.11, 0.14 and 0.22 wt%. Creep tests were carried out at 923 K at stress levels 140, 175, 200 and 225 MPa. Creep rupture strength increased substantially with increase in nitrogen content. The variation of steady state creep rate with stress showed a power law relationship. The power law exponent varied between 6.4 and 13.7 depending upon the nitrogen content. Rupture ductility was generally above 40% at all the test conditions and for all the nitrogen contents. It was observed that the internal creep damage and surface damage decreased with increase in nitrogen content. Fracture mode was found to generally shift from intergranular failure to transgranular failure with increasing nitrogen content.  相似文献   

14.
Changes occurring in the chemical composition, microstructure, mechanical properties, and carburization behavior of type 316LN stainless steel and modified 9Cr-1Mo steel on exposure to flowing sodium at 798?K (525?°C) for 16,000?hours in a bimetallic loop are discussed in this article. Type 316LN stainless steel revealed a degraded layer of approximately 5???m depth. No significant microstructural changes were observed in the case of modified 9Cr-1Mo steel exposed to sodium. The carburization depth in type 316LN stainless steel was approximately 100???m and the surface carbon concentration was 0.374?wt?pct. In the case of modified 9Cr-1Mo steel, the carbon concentration at the surface was approximately 3.50?wt?pct and the depth of carburization was nearly 75???m. The concentration of nickel and chromium decreased from the bulk to the surface of type 316LN stainless steel, leading to the formation of a ferrite layer. The concentration of these two elements reached the original matrix concentration at around 30???m. Sodium-exposed material indicated an increase in yield strength by 10?pct and reduction in ductility by 34?pct vis-à-vis annealed material. No such changes in strength and ductility were observed in the case of modified 9Cr-1Mo steel. A decrease in impact energy was noticed for sodium-exposed type 316LN stainless steel and modified 9Cr-1Mo steel vis-à-vis as-received material.  相似文献   

15.
The effect of nitrogen content on the stress corrosion cracking (SCC) behavior of 22 pct Cr duplex stainless steel (DSS) in chloride solutions was investigated in this study. Slow strain rate testing (SSRT) was employed to evaluate the SCC susceptibility. The experimental results showed that the tensile strength and ductility of 22 pct Cr DSS increased with increasing amount of nitrogen (in the range of 0.103 to 0.195 wt pct). Slow strain rate testing results indicated that 22 pct Cr DSSs were resistant to SCC in 3.5 wt pct NaCl solution at 80 °C. However, environmentally assisted cracking occurred in 40 wt pct CaCl2 solution at 100 °C and in boiling 45 wt pct MgCl2 solution at 155 °C, respectively. The effects of environment and nitrogen content in DSS on the cracking susceptibility are discussed in this article. Selective dissolution of ferrite phase was found to participate in the SCC process for tests in CaCl2 solution. At temperatures above 80 °C, dynamic strain aging was found to occur in various environments at a strain beyond plastic deformation.  相似文献   

16.
The evolution of dislocation densities and of dislocation microstructures during cyclic loading of AISI 316L is systematically evaluated. In addition, internal stresses are also measured for every cycle and comprehensively analyzed. These observations are made in order to establish relationships between the evolution of dislocation condition and internal stresses, and ultimately to obtain a thorough insight into the complex cyclic response of AISI 316L. Moreover, the dependencies of established relationships on the variation of temperature and strain amplitude are investigated. The back stresses (long-range stresses associated with the presence of collective dislocations over different length scales) are mainly responsible for the cyclic deformation response at high strain amplitudes where dislocations tend to move more quickly in a wavy manner. In contrast, the effective stress, coupling with short-range dislocation interactions, plays an insignificant role on the material cyclic response for wavy slip conditions, but increasingly becomes more important for planar slip conditions. The additionally strong short-range interactions between dislocations and point defects (initially with solute atoms and later in life with corduroy structure) at 573 K (300 °C) cause dislocations to move in more planar ways, resulting in a significant increase in effective stress, leading to their influential role on the material cyclic response.  相似文献   

17.
The current study examines the effect of heating mode, temperature, and varying yttria alumina garnet (YAG) addition (5 and 10 wt pct) on the densification and properties of austenitic (316L) stainless steel. The straight 316L stainless steel and 316L-YAG composites were heated in a radiatively heated (conventional) and 2.45 GHz microwave sintering furnace. The compacts were consolidated through solid state as well as supersolidus sintering at 1200 °C and 1400 °C, respectively. Both 316L and 316L-YAG compacts couple with microwaves and heat to the sintering temperature rapidly (∼45 °C/min). The overall processing time was reduced by about 90 pct through microwave sintering. As compared to conventional sintering, compacts sintered in microwaves exhibit higher densification and finer microstructure but no corresponding improvement in mechanical properties and wear resistance. This has been correlated to elongated, irregular pore structure in microwave-sintered compacts.  相似文献   

18.
Creep tests were carried out at 823 K (550 °C) and 210 MPa on Reduced Activation Ferritic-Martensitic (RAFM) steel which was subjected to different extents of prior fatigue exposure at 823 K at a strain amplitude of ±0.6 pct to assess the effect of prior fatigue exposure on creep behavior. Extensive cyclic softening that characterized the fatigue damage was found to be immensely deleterious for creep strength of the tempered martensitic steel. Creep rupture life was reduced to 60 pct of that of the virgin steel when the steel was exposed to as low as 1 pct of fatigue life. However, creep life saturated after fatigue exposure of 40 pct. Increase in minimum creep rate and decrease in creep rupture ductility with a saturating trend were observed with prior fatigue exposures. To substantiate these findings, detailed transmission electron microscopy studies were carried out on the steel. With fatigue exposures, extensive recovery of martensitic-lath structure was distinctly observed which supported the cyclic softening behavior that was introduced due to prior fatigue. Consequently, prior fatigue exposures were considered responsible for decrease in creep ductility and associated reduction in the creep rupture strength.  相似文献   

19.
In this paper, Low cycle fatigue (LCF) behavior of 316LN austenitic stainless steel alloyed with 0.078 and 0.22 wt% nitrogen, designated as N078 and N022 steels respectively, is compared in the temperature range 300–873 K by strain controlled fatigue tests at ± 0.6% strain amplitude. Interestingly, N022 steel showed continuous decrease in fatigue life with temperature in contrast to N078 steel which showed maximum in fatigue life at 573 K. Drastic reduction in fatigue life is observed in both the steels in the temperature range 673–873 K and has been attributed to the occurrence of dynamic strain aging. Both steels exhibited manifestations (for ex.: decrease in plastic strain and anomalous stress response with increase in temperature) corresponding to the occurrence of Dynamic Strain Ageing (DSA) in the above temperature range. Under all testing conditions, fracture surfaces revealed transgranular crack initiation and transgranular crack propagation.  相似文献   

20.
The high-temperature austenite phase of a high-interstitial Mn- and Ni-free stainless steel was stabilized at room temperature by the full dissolution of precipitates after solution annealing at 1523 K (1250 °C). The austenitic steel was subsequently tensile-tested in the temperature range of 298 K to 503 K (25 °C to 230 °C). Tensile elongation progressively enhanced at higher tensile test temperatures and reached 79 pct at 503 K (230 °C). The enhancement at higher temperatures of tensile ductility was attributed to the increased mechanical stability of austenite and the delayed formation of deformation-induced martensite. Microstructural examinations after tensile deformation at 433 K (160 °C) and 503 K (230 °C) revealed the presence of a high density of planar glide features, most noticeably deformation twins. Furthermore, the deformation twin to deformation-induced martensite transformation was observed at these temperatures. The results confirm that the high tensile ductility of conventional Fe-Cr-Ni and Fe-Cr-Ni-Mn austenitic stainless steels may be similarly reproduced in Ni- and Mn-free high-interstitial stainless steels solution annealed at sufficiently high temperatures. The tensile ductility of the alloy was found to deteriorate with decarburization and denitriding processes during heat treatment which contributed to the formation of martensite in an outermost rim of tensile specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号