首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements on ignition delay times of n-butane/hydrogen/oxygen mixtures diluted by argon were conducted using the shock tube at pressures of 2, 10 and 20 atm, temperatures from 1000 to 1600 K and hydrogen fractions (XH2) from 0 to 98%. It is found that hydrogen addition has a non-linear promoting effect on ignition delay of n-butane. Results also show that for XH2 less than 95%, ignition delay time shows an Arrhenius type dependence and the increase of pressure and temperature lead to shorter ignition delay times. However, for XH2 = 98% and 100% mixtures, non-monotonic pressure dependence of ignition delay time were observed. The performances of the Aramco2.0 model, San Diego 2016 model and USC2.0 model were evaluated against the experimental data. Only the Aramco2.0 model gives a reasonable agreement with all the measurements, which was conducted in this study to interpret the effect of pressure and hydrogen addition on the ignition chemistry of n-butane.  相似文献   

2.
为掌握同轴分级燃烧室性能参数随空气分级比(主燃级空气流量的比值)的变化规律,以某同轴分级燃烧室为研究对象,数值分析了空气分级比对燃烧室的燃烧效率、总压损失、出口温度分布、污染物排放和绝热壁面最高温度的影响。结果表明:空气分级比主要会改变角涡位置的燃烧温度和高温烟气的停留时间;随着空气分级比的升高,燃烧室总压损失、出口温度分布系数、NOx排放、绝热壁面最高温度逐渐升高,但燃烧效率、CO污染物排放、径向温度分布系数对空气分级比不敏感;在同轴分级燃烧室设计中,在保证燃烧稳定的前提下可采用较小的空气分级比以实现燃烧室高效、低阻、低污染燃烧。  相似文献   

3.
The staged injector has exhibited great potential to achieve low emissions and is becoming the preferable choice of many civil airplanes. Moreover, it is promising to employ this injector design in military engine, which requires most of the combustion air enters the combustor through injector to reduce smoke emission. However, lean staged injector is prone to combustion instability and extinction in low load operation, so techniques for broadening its stable operation ranges are crucial for its application in real engine.
In this work, the LBO performance of a staged injector is assessed and analyzed on a single sector test section.The experiment was done in atmospheric environment with optical access. Kerosene-PLIF technique was used to visualize the spray distribution and common camera was used to record the flame patterns. Emphasis is put on the influence of pilot burner on LBO performance. The fuel to air ratios at LBO of six injectors with different pilot swirler vane angle were evaluated and the obtained LBO data was converted into data at idle condition. Results show that the increase of pilot swirler vane angle could promote the air assisted atomization, which in turn improves the LBO performance slightly. Flame patterns typical in the process of LBO are analyzed and attempts are made to find out the main factors which govern the extinction process with the assistance of spray distribution and numerical flow field results. It can be learned that the flame patterns are mainly influenced by structure of the flow field just behind the pilot burner when the fuel mass flow rate is high; with the reduction of fuel, atomization quality become more and more important and is the main contributing factor of LBO. In the end of the paper,conclusions are drawn and suggestions are made for the optimization of the present staged injector.  相似文献   

4.
In this study, the effects of ignition advance on dual sequential ignition engine characteristics and exhaust gas emissions for hydrogen enriched butane usage and lean mixture were investigated numerically and experimentally. The main purpose of this study is to reveal the effects of h-butane application in a commercial spark ignition gasoline engine. One cylinder of the commercially dual sequential spark ignition engine was modeled in the Star-CD software, taking into account all the components of the combustion chamber (intake-exhaust manifold connections, intake-exhaust valves, cylinder, cylinder head, piston, spark plugs). Angelberger wall approximation, k-ε RNG turbulence model and G-equation combustion model were used for analysis. In the dual sequential spark ignition, the difference between the spark plugs was defined as 5° CAD. At the numerical analysis; 10.8:1 compression ratio, 1.3 air-fuel ratio, 2800 rpm engine speed, 0.0010 m the flame radius and 0.0001 m the flame thickness were kept constant. The hydrogen-butane mixture was defined as 4%–96% by mass. In the analysis, the optimal ignition advance was determined by the working conditions. In addition, the effects of changes in ignition advance were examined in detail at lean mixture. For engine operating conditions under investigation, it has been determined that the 50° CAD ignition advance from the top dead center is the optimal ignition advance in terms of engine performance and emission balance. It has also been found that the NOx formation rises up as the ignition advance increases. The BTE values were approximately 12.01% higher than butane experimental results. The experimental BTE values for h-butane were overall 3.01% lower than h-butane numerical results.  相似文献   

5.
The current study examined the self-excited thermoacoustic instability of hydrogen/methane premixed flames using a variable-length combustor (300–1100 mm). The global dynamic pressure, heat release rate oscillation, together with the flame dynamics were studied. Results showed that both the hydrogen concentration and the chamber length were critical in determining the acoustic oscillation mode and instability trend. Low-frequency primary acoustic modes (<200 Hz) were mainly excited when the hydrogen concentration was low, whereas primary acoustic modes with relatively higher frequencies (~400 Hz) tended to occur in cases with a high hydrogen proportion (>40%). For primary acoustic modes lower than 200 Hz, the primary oscillation frequency tended to increase linearly with a rising hydrogen proportion. Heat release oscillation and flame dynamics analyses demonstrated that for the flame with large-scale shape deformation, the initial addition of hydrogen would intensify the heat release oscillation. Nevertheless, a further increase in the hydrogen level tended to inhibit the heat release oscillation by weakening the flame shape deformation. Eventually, a sufficient high-level of hydrogen addition would weaken the primary acoustic modes that have similar frequencies.  相似文献   

6.
Hydrogen has many excellent combustion properties that can be used for improving combustion and emissions performance of gasoline-fueled spark ignition (SI) engines. In this paper, an experimental study was carried out on a four-cylinder 1.6 L engine to explore the effect of hydrogen addition on enhancing the engine lean operating performance. The engine was modified to realize hydrogen port injection by installing four hydrogen injectors in the intake manifolds. The injection timings and durations of hydrogen and gasoline were governed by a self-developed electronic control unit (DECU) according to the commands from a calibration computer. The engine was run at 1400 rpm, a manifold absolute pressure (MAP) of 61.5 kPa and various excess air ratios. Two hydrogen volume fractions in the total intake of 3% and 6% were applied to check the effect of hydrogen addition fraction on engine combustion. The test results showed that brake thermal efficiency was improved and kept roughly constant in a wide range of excess air ratio after hydrogen addition, the maximum brake thermal efficiency was increased from 26.37% of the original engine to 31.56% of the engine with a 6% hydrogen blending level. However, brake mean effective pressure (Bmep) was decreased by hydrogen addition at stoichiometric conditions, but when the engine was further leaned out Bmep increased with the increase of hydrogen addition fraction. The flame development and propagation durations, cyclic variation, HC and CO2 emissions were reduced with hydrogen addition. When excess air ratio was approaching stoichiometric conditions, CO emission tended to increase with the addition of hydrogen. However, when the engine was gradually leaned out, CO emission from the hydrogen-enriched engine was lower than the original one. NOx emissions increased with the increase of hydrogen addition due to the raised cylinder temperature.  相似文献   

7.
《能源学会志》2020,93(4):1373-1381
Ignition and burnout characteristics of semi-coke and bituminous coal blends were investigated by thermogravimetric analyzer and drop tube furnace. The results showed that the ignitability index and the comprehensive combustion characteristic index of the blends decrease as the blending proportion of semi-coke increases, but the average activation energy of the blends increases gradually. Ignition mode of bituminous coal is changed from homogeneous to hetero-homogeneous ignition with the increasing of semi-coke content in the blends. When the mixing proportion of semi-coke is lower than 45%, the burnout rate is lower than the weighted value in the early stage of combustion and gradually higher than the weighted value with the development of combustion process. However, the burnout is always lower than the weighted value to mix with 67% semi-coke. Increasing furnace temperature from 850 °C to 1050 °C can improve the mid-term reaction process, alleviate the negative effects of semi-coke on the co-combustion process and increase the burnout rate. So less than 45% semi-coke blending ratio and increasing furnace temperature are recommended for semi-coke and bituminous coal co-combustion.  相似文献   

8.
In this study, the effects of hydrogen addition on the engine performance were investigated using spark ignition engine fueled gasoline with a compression ratio of 15 at an air excess ratio (λ) of 1.8 and above. At λ = 1.8, the indicated thermal efficiency at the spark timing of the knock limit reached the maximum level under the conditions in which the hydrogen fraction was set to 4% of the heating value of the total fuel. Based on a heat balance analysis, the best hydrogen fraction was found as a balance between the improvement in the burning efficiency and the increase in heat loss. The lean limit was extended when the hydrogen fraction was increased from λ = 1.80 to λ = 2.28. The hydrogen addition achieved the maximum indicated thermal efficiency at spark timing of the knock limit was obtained at λ = 2.04, where the hydrogen fraction was 10%.  相似文献   

9.
This paper investigates the effect of ethanol-gasoline-hydrogen in a lean-burn SI engine with different proportions such as E5, E10, E20, E30, and E40 at compression ratio 10.5:1. The results infer that the E10 blend is the optimized one. Further, E10 mixture investigates for 5% and 10% hydrogen addition on energy basis. Overall, this study establishes that the addition of ethanol enhances brake power by 9% and brake thermal efficiency by about 7%. Hydrogen enrichment to E10 mixture shows a significant enhancement in brake power and brake thermal efficiency at a lower equivalence ratio. Further, it observes that the lean limit had extended to a 0.47 equivalence ratio compared to a 0.5 equivalence ratio with the E10, and 0.54 with pure gasoline. The addition of hydrogen to E10, improves the combustion process and heat release rate while it reduces cycle-by-cycle variations and hydrocarbon emissions.  相似文献   

10.
Experiments are conducted to investigate the effect of system pressure, Ca/S ratio and primary air velocity on sulphur capture in a pressurized circulating fluidized bed (PCFB) combustor. The pressure inside the PCFB combustor is varied from 200 to 700 kPa. The Ca/S ratio is varied from 1.6 to 3.0. The primary air velocity ranges from 3 to 7 ms?1. The bed temperature is maintained at 750°C. The sulphur capture increases with system pressure in the present range of experimental investigations. The sulphur capture also increases with Ca/S ratio up to a certain ratio and then shows a decreasing trend for the given operating conditions. A semi‐empirical model is developed for explaining the sulphur capture mechanism in the pressurized circulating fluidized bed combustor under batch combustion conditions. The experimental data are validated with the model predictions and a reasonable agreement has been observed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
This study systematically investigated the application of a turbocharger system to a hydrogen spark ignition engine to extend operating limitations under high loads. The exhaust system of a commercial 2.4-L natural aspiration spark ignition engine was modified by adopting a turbocharger system. Engine test speeds were 2000–6000 rpm at intervals of 1000 rpm. The intake pressure was fixed for each experimental case, however, the quantity of hydrogen and spark advance timings were varied before the back-fire occurred. High load conditions under natural aspiration and turbocharging conditions were compared. The results indicated that distinctly higher boosts with the turbocharging system helped extend high load conditions, however, the high exhaust pressure obstructed the increasingly high load conditions under high speeds.  相似文献   

12.
The effect of a multi‐tailpipe structure on a pulse combustor with an exhaust decoupler and a vent pipe is investigated. A nonlinear theoretical model is established, and corresponding experiments are made to verify the theoretical model. The results show that the multi‐tailpipe structure has two effects: It enhances the exhaust gas resistance and decreases exhaust gas velocity in the tailpipe; it also expands the tailpipe heat dissipation area and increases the heat loss. The amplitude of pressure fluctuations in the combustion chamber and exhaust decoupler is determined by competition between the strengthening effect of tailpipe resistance and the weakening effect of heat loss from the tailpipe. Frequency and pressure characteristics are dominated by tailpipe resistance and tailpipe heat loss. The working region is divided into three parts for different structure parameters: low frequency inphase zone, unstable zone, and high‐frequency antiphase zone. Tailpipe resistance only affects the unstable zone, and the necessary value of tailpipe friction exists to minimize the unstable zone. Heat loss from the tailpipe can reduce the unstable zone and cause it to squeeze the inphase zone, resulting in shrinkage of the inphase zone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
In order to analyze the effect of hydrogen addition on natural gas (NG) engine's thermal efficiency and emission, an experimental research was conducted on a spark ignition NG engine using variable composition hydrogen/CNG mixtures (HCNG). The results showed that hydrogen enrichment could significantly extend the lean operation limit, improve the engine's lean burn ability, and decrease burn duration. However, nitrogen oxides (NOx)(NOx) were found to increase with hydrogen addition if spark timing was not optimized according to hydrogen's high burn speed. Also found when spark timing was set at constant was that hydrogen addition actually increases heat transfer out of the cylinder due to smaller quenching distance and higher combustion temperature, thus is not good to improve thermal efficiency if combined with the effect of non-ideal spark timing. But if spark timing was retarded to MBT, taking advantage of hydrogen's high burn speed, NOxNOx emissions exhibited no obvious increase after hydrogen addition and engine thermal efficiency increased with the increase of hydrogen fraction. Unburned hydrocarbon always decreased with the increase of hydrogen fraction.  相似文献   

14.
Detailed numerical analysis on a cavity-based scramjet combustor is carried out by introducing an innovatively shaped strut and multi strut with backward-facing step to generate intense vorticity, which helps in efficient mixing of fuel and oxidizer. In this study, the flow dynamics with finite volume approach on commercial software Ansys-Fluent 20.0 to solve the compressible two-dimensional fluid flow with RANS equation by considering the density-based solver with SST k- ω turbulent model. The species transport model with volumetric reaction and finite rate/eddy dissipation turbulence chemistry interaction is adopted to study the combustion phenomena. Numerically calculated results are validated with its corresponding experimental results by comparing pressure distribution along the length of the combustor, distribution of H2 mole fraction for different axial locations of combustors, and it is found that the interaction of the shear shock layer enhances the mixing rate by intensifying turbulence. It is found that the multi strut improves the mixing and combustion efficiency compared with that of the single strut owing to the formation of a significant separation layer, resulting in multiple shocks, vortices, and a larger recirculation zone.  相似文献   

15.
Linear hydrogen engine (LHE) is a new technology of hydrogen energy utilization due to its flexible compression ratio coupling with ignition, fuel-air mixing, and combustion to optimize thermal efficiency. Fuel-air mixing in LHE is expected to be promoted by using ignition, which differs with conventional engine. This paper develops a full-cycle model which couples with dynamics, hydrogen-air mixing and combustion to describe the effect of ignition position, meanwhile a loop iterative calculation method is proposed to solve the coupling model for hydrogen-air mixing predication. The results show that ignition position variation can cause the piston trajectory to change significantly, and the higher equivalent speed is obtained in the medium ignition position. Besides, the higher equivalent speed in the injection stage is conducive to the diffusion of hydrogen, but the higher equivalent speed is not conducive to diffusion and mixing in the diffusion stage. More importantly, the equivalence ratio distribution at the ignition position is more uniform for the later ignition position due to the longer mixing stroke, and the mixture uniformity index at the ignition position is inversely proportional to the advance of the ignition position. Therefore, the late ignition is recommended to obtain a uniform hydrogen mixture.  相似文献   

16.
This study investigated the effect of varying the spark advance timing and excess air ratio (air excessive ratio; λ) on the combustion and emission of nitrogen oxide (NOx) in a hydrogen-fueled spark ignition engine under part load conditions. The engine test speed was fixed at 2,000 rpm and the torque condition was 60 Nm. Excess air ratio was varied from the stoichiometric (λ = 1) to the lean mixture condition (λ = 2.2) by throttling. The spark advance timing was controlled to determine the maximum brake torque timing (MBT) for each excess air ratio value. Subsequent to the determination of the spark advance timing for MBT, the spark timing was varied from MBT timing to top dead center. Based on the results, it is concluded that the leanest mixture condition (λ = 2.2) with MBT spark timing exhibited the highest brake thermal efficiency of 34.17% and the NOx emissions were as low as 14 ppm.  相似文献   

17.
In recent years, there has been a rapid transition from internal combustion engines to hybrid and electric vehicles. It is an inevitable fact that the dominance of internal combustion engines in the market will continue for many years due to the charging and battery problems in these vehicles. Therefore, it is an important issue to improve the performance and emissions of internal combustion engines by making them work with alternative energy sources. In this study, hydrogen-diesel dual fuel mode was used in a dual-fuel compression ignition single cylinder engine with common rail fuel injection system and electronically controlled gas fuel system. The study was carried out at constant speed (1850 rpm), different load (3-4.5-6-7.5-9 Nm) and different hydrogen injector opening amounts (1.6-1.8-2.0 ms). The effects of hydrogen energy ratios obtained with different hydrogen injector opening amount on engine performance and emissions were examined. According to the results, it was determined that the in-cylinder pressure values increased at medium and high loads, and the specific energy consumption decreased. When the emission values were examined, it was determined that there was an increase in NO emissions and a significant decrease in other emissions. However, increasing the hydrogen energy ratio above 14% adversely affected engine performance and emissions.  相似文献   

18.
The jet-to-crossflow pressure ratio has a large impact on the combustion mode transition in the scramjet engine, and this information needs to be explored comprehensively. The effect of the jet-to-crossflow pressure ratio on the mixing and combustion processes in a backward-facing step combustor has been investigated numerically, and two similar cases have been utilized to validate the numerical approaches employed. The obtained results show that the wall pressure distribution for the nonreacting flow field has been predicted well, and the peak pressures are all a bit underestimated. However, the predicted wall pressure distribution for the reacting flow field does not match well with the experimental data, and it is overestimated. When the hydrogen is injected only from the bottom wall of the combustor, the mixing efficiency decreases with the increase of the jet-to-crossflow pressure ratio irrespective of the nonreacting or reacting flow field. When the hydrogen is injected simultaneously from the top and bottom walls, the separation shock wave is pushed forward to the entrance of the combustor, and it varies from an oblique one to a normal one. This means that the jet-to-crossflow pressure ratio has a great impact on the combustion mode transition for the scramjet engine, and the stable ramjet/scramjet mode transition can be obtained by controlling the fuel injection scheme.  相似文献   

19.
Ignition delay times of dimethyl ether (DME)/hydrogen/oxygen/argon mixtures (hydrogen blending ratio ranging from 0% to 100%) were measured behind reflected shock waves at pressures of 1.2–10 atm, temperature range of 900–1700 K, and for the lean (= 0.5), stoichiometric (= 1.0) and rich (= 2.0) mixtures. For more understanding the effect of initial parameters, correlations of ignition delay times for the lean mixtures were obtained on the basis of the measured data (XH2 ? 95%) through multiple linear regression. Ignition delay times of the DME/H2 mixtures demonstrate three ignition regimes. For XH2 ? 80%, the ignition is dominated by the DME chemistry and ignition delay times show a typical Arrhenius dependence on temperature and pressure. For 80% ? XH2 ? 98%, the ignition is dominated by the combined chemistries of DME and hydrogen, and ignition delay times at higher pressures give higher ignition activation energy. However, for XH2 ? 98%, the transition in activation energy for the mixture was found as decreasing the temperature, indicating that the ignition is dominated by the hydrogen chemistry. Simulations were made using two available models and different results were presented. Thus, sensitivity analysis was performed to illustrate the causes of different simulation results of the two models. Subsequently, chemically interpreting on the effect of hydrogen blending ratio on ignition delay times was made using small radical mole fraction and reaction pathway analysis. Finally, high-pressure simulations were performed, serving as a starting point for the future work.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号