首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The incorporation of essential oils and nanotechnology into edible films has the potential to improve the microbiological safety of foods. The aim of this study was to evaluate the effectiveness of pullulan films containing essential oils and nanoparticles against 4 foodborne pathogens. Initial experiments using plate overlay assays demonstrated that 2% oregano essential oil was active against Staphylococcus aureus and Salmonella Typhimurium, whereas Listeria monocytogenes and Escherichia coli O157:H7 were not inhibited. Two percent rosemary essential oil was active against S. aureus, L. monocytogenes, E. coli O157:H7, and S. Typhimurium, when compared with 1%. Zinc oxide nanoparticles at 110 nm were active against S. aureus, L. monocytogenes, E. coli O157:H7, and S. Typhimurium, when compared with 100 or 130 nm. Conversely, 100 nm silver (Ag) nanoparticles were more active against S. aureus than L. monocytogenes. Using the results from these experiments, the compounds exhibiting the greatest activity were incorporated into pullulan films and found to inhibit all or some of the 4 pathogens in plate overlay assays. In challenge studies, pullulan films containing the compounds effectively inhibited the pathogens associated with vacuum packaged meat and poultry products stored at 4 °C for up to 3 wk, as compared to control films. Additionally, the structure and cross‐section of the films were evaluated using electron microscopy. The results from this study demonstrate that edible films made from pullulan and incorporated with essential oils or nanoparticles may improve the safety of refrigerated, fresh or further processed meat and poultry products.  相似文献   

3.
BACKGROUND: In this study the antimicrobial effectiveness of oregano and sage essential oils (EOs) incorporated into two different matrices, whey protein isolate (WPI) and cellulose‐based filter paper, was analysed. RESULTS: Antimicrobial properties of WPI‐based films containing oregano and sage EOs were tested against Listeria innocua, Staphylococcus aureus and Salmonella enteritidis. Oregano EO showed antimicrobial activity against all three micro‐organisms. The highest inhibition zones were against L. innocua. However, sage EO did not show antimicrobial activity against any of the micro‐organisms. Antimicrobial activity was confirmed for both EOs using cellulose‐based filter paper as supporting matrix, although it was significantly more intense for oregano EO. Inhibition surfaces were significantly greater when compared with those of the WPI films. This finding is likely due to the higher porosity and diffusivity of the active compounds in the filter paper. CONCLUSION: The interactions between the EOs and the films have a critical effect on the diffusivity of the active compounds and therefore on the final antimicrobial activity. As a result, to obtain active edible films, it is necessary to find the equilibrium point between the nature and concentration of the active compounds in the EO and the formulation of the film. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
Antimicrobial activity of the essential oils of Turkish plant spices   总被引:5,自引:0,他引:5  
The antimicrobial activity of the essential oils of nine plant spices (savory, laurel, oregano, basil, cumin, seafennel, myrtle, pickling herb, and mint) were tested at three concentrations (1, 10, and 15%) and tested on various microorganisms (Salmonella typhimurium, Bacillus cereus, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Yersinia enterocolitica, Saccharomyces cerevisiae, Candida rugosa, Rhizopus oryzae and Aspergillus niger). The results showed that the essential oils tested varied in their antimicrobial activity. Individual or combinations of plant essential oils may provide an efficacious mixture for the inactivation of pathogenic and spoilage microorganisms, and to achieve adequate shelf-life of foods.  相似文献   

5.
In this study, antimicrobial packaging materials were developed by incorporating known concentrations (w/w) of essentials oils of oregano (Origanum vulgare) and thyme (Thymus vulgaris) into low-density polyethylene (LDPE), suitable for use as food packaging, via two different methods: ionizing treatment and directly by extrusion. The mechanical, barrier, and antimicrobial properties of the packaging were evaluated against the following foodborne pathogens: Salmonella typhimurium, Listeria monocytogenes, and Escherichia coli O157:H7. The results demonstrate that films developed by extrusion incorporating 4% (w/w) of essential oils had a higher inhibitory effect than those obtained using the ionizing treatment. The packaging developed by extrusion containing 1% (w/w) showed a positive inhibitory effect, while those obtained by the ionizing treatment had no inhibitory effect against any of the test microorganisms. The incorporation of essential oils on the LDPE films generated a plasticizer effect, whereas the ones obtained by means of ionizing treatment did significantly affect the barrier properties of the films. The results of this study showed that plant-derived essential oils could be incorporated in active films for food packaging.  相似文献   

6.
This study reported the chemical composition, phenolic content, antioxidant and anti‐lipase activity of oregano and Lippia essential oils. The major compounds found in oregano essential oil were γ‐terpinene (32.10%), α‐terpinene (15.10%), p‐cymene (8.00%) and thymol (8.00%). In Lippia essential oil, α‐limonene (76.80%) and 1,8‐cineole (4.95%) represented the major compounds. Oregano essential oil had higher phenolic content (12.47 mg gallic acid mL?1) and DPPH scavenging activity (IC50 0.357 μg mL?1) than Lippia essential oil (7.94 mg gallic acid mL?1 and IC50 0.400 μg mL?1, respectively). Both essential oils had similar antioxidant indexes (about 1.2) determined by Rancimat. Moreover, oregano essential oil had also higher anti‐lipase activity (IC50 5.09 and 7.26 μg mL?1). Higher phenolic content in the essential oils was related with higher scavenging and anti‐lipase activities. Oregano and Lippia essential oils could be used as natural antioxidants on food products.  相似文献   

7.
Effects of Essential Oils from Plants on Growth of Food Spoilage Yeasts   总被引:6,自引:0,他引:6  
Thirty-two essential oils from plants were screened for inhibitory effects on 13 food-spoilage and industrial yeasts. Of these, essential oils of allspice, cinnamon, clove, garlic, onion, oregano, savory, and thyme were most inhibitory. Oils were subsequently tested for their effects on biomass production and pseudomycelium formation of eight genera of yeasts. Garlic oil was a potent inhibitor of yeast growth at concentrations as low as 25 ppm. The oils of onion, oregano and thyme were also strongly inhibitory. Essential oils (100 ppm) had no effect on pseudomycelium production by Candida lipolytica. However, all eight essential oils delayed pseudomycelium formation by Hansenula anomala, whereas six oils stimulated pseudomycelium production by Lodderomyces elongisporus. Cinnamon and clove oils were clearly stimulatory to pseudomycelium production by Saccharomyces cerevisiae.  相似文献   

8.
The mechanism of the antimicrobial action of Spanish oregano (Corydothymus capitatus), Chinese cinnamon (Cinnamomum cassia), and savory (Satureja montana) essential oils against cell membranes and walls of bacteria was studied by the measurement of the intracellular pH and ATP concentration, the release of cell constituents, and the electronic microscopy observations of the cells when these essential oils at their MICs were in contact with Escherichia coli O157:H7 and Listeria monocytogenes. E. coli O157:H7 and L. monocytogenes, two pathogenic foodborne bacteria, were used as gram-negative and gram-positive bacterial models, respectively. Treatment with these essential oils at their MICs affected the membrane integrity of bacteria and induced depletion of the intracellular ATP concentration. Spanish oregano and savory essential oils, however, induced more depletion than Chinese cinnamon oil. An increase of the extracellular ATP concentration was observed only when Spanish oregano and savory oils were in contact with E. coli O157:H7 and L. monocytogenes. Also, a significantly higher (P < or = 0.05) cell constituent release was observed in the supernatant when E. coli O157:H7 and L. monocytogenes cells were treated with Chinese cinnamon and Spanish oregano oils. Chinese cinnamon oil was more effective to reduce significantly the intracellular pH of E. coli O157:H7, whereas Chinese cinnamon and Spanish oregano decreased more significantly the intracellular pH of L. monocytogenes. Electronic microscopy observations revealed that the cell membrane of both treated bacteria was significantly damaged. These results suggest that the cytoplasmic membrane is involved in the toxic action of essential oils.  相似文献   

9.
The antibacterial activity of the essential oils (EO) of oregano and thyme added at doses of 0.1 or 0.2 and 0.1 ml/100 g, respectively, to feta cheese inoculated with Escherichia coli O157:H7 or Listeria monocytogenes was investigated during cheese storage under modified atmosphere packaging (MAP) of 50% CO2 and 50% N2 at 4 °C. Compositional analysis showed that the predominant phenols were carvacrol and thymol for both EO. In control feta inoculated with the pathogens and stored under MAP, results showed that E. coli O157:H7 and L. monocytogenes strains survived up to 32 and 28 days of storage. However, in feta cheese treated with oregano EO at the dose of 0.1 ml/100 g, E. coli O157:H7 or L. monocytogenes survived up to 22 and 18 days, respectively, whereas at the dose of 0.2 ml/100 g up to16 or 14 days, respectively. Feta cheese treated with thyme EO at 0.1 ml/100 g showed populations of E. coli O157:H7 or L. monocytogenes not significantly different (P > 0.05) than those of feta cheese treated with oregano at 0.1 ml/100 g. Although both essential oils exhibited equal antibacterial activity against both pathogens, the populations of L. monocytogenes decreased faster (P < 0.05) than those of E. coli O157:H7 during the refrigerated storage, indicating a stronger antibacterial activity of both essential oils against the former pathogen.  相似文献   

10.
ANTIFUNGAL ACTIVITIES OF THYME, CLOVE AND OREGANO ESSENTIAL OILS   总被引:1,自引:1,他引:1  
The antifungal potential of essential oils of oregano (Origanum vulgare), thyme (Thymus vulgaris) and clove (Syzygium aromaticum) was determined. To establish this antifungal potential, two molds related to food spoilage, Aspergillus niger and Aspergillus flavus, were selected. The agar dilution method was employed for the determination of antifungal activities. The three essential oils analyzed presented inhibitory effects on both molds tested. Oregano essential oil showed the highest inhibition of mold growth, followed by clove and thyme. Aspergillus flavus was more sensitive to thyme essential oil than A. niger. Clove essential oil was a stronger inhibitor against A. niger than against A. flavus.  相似文献   

11.
The purpose of this work was to determine chemical composition and antioxidant activity of essential oil of different oregano species from Argentina: ‘Cordobes’, ‘Criollo’, ‘Mendocino’ and ‘Compacto’. The essential oil composition was determined by gas–liquid chromatography and mass spectrometry. Scavenging activity was analysed by DPPH test. The antioxidant activity of the essential oils was determined by an accelerated oxidation test in canola oil. Thirty‐nine compounds were identified in the oregano essential oils. The oregano species showed differences in their chemical composition, radical scavenging activity and antioxidant activity. The main compounds in the studied oregano species were thymol and trans‐sabinene hydrate followed by γ‐terpinene, terpinen‐4‐ol and α‐terpinene. The oregano, ‘Criollo’, was rich in γ‐terpinene and had lower thymol and trans‐sabinene hydrate and higher α‐terpinene and carvacrol contents than the other oregano species. ‘Mendocino’ had higher trans‐sabinene hydrate and limonene than the other oregano species. ‘Cordobes’ and ‘Compacto’ had higher thymol content, radical scavenging activity and antioxidant activity in canola oil.  相似文献   

12.
The aim of this study was to investigate antibacterial effects of oregano and thyme essential oils (EOs) on some food-borne bacteria. GC-MS analysis of EOs was performed in order to determine their composition and phenols were predominant constituents. The investigation of the antibacterial effects of EOs was performed on Salmonella Enteritidis, Salmonella Thyphimurium, Staphylococcus aureus, methicillin resistant Staphylococcus aureus, Escherichia coli and Bacillus cereus, and MICs were determined by broth microdilution method. EOs exhibited antibacterial activity against all tested microorganisms.  相似文献   

13.
Ethyl acetate extracts and hydrodistillated essential oils from five cultivars of tropical citrus epicarps were evaluated for their inhibitory activities against Aspergillus fumigatus, Aspergillus niger, Aspergillus flavus, Aspergillus parasiticus, and Penicillium sp. using disk diffusion and broth microdilution assays. Essential oils prepared from kaffir lime (Citrus hystrix DC) and acid lime (Citrus aurantifolia Swingle) epicarps exhibited stronger antifungal activity to all fungi than their ethyl acetate extracts with minimum inhibitory concentration and minimum fungicidal concentration values of 0.56 and 1.13 mg/ml (dry matter), respectively, against aflatoxin-producing A. flavus and A. parasiticus. The dominant components of the essential oil from kaffir lime were limonene, citronellol, linalool, o-cymene, and camphene, whereas limonene and p-cymene were major components of acid lime essential oil. Pure limonene, citronellal, and citronellol were five to six times less fungicidal than the natural essential oils, indicating the synergistic activity of many active compounds present in the oils. Kaffir and acid lime essential oils significantly reduced aflatoxin production of A. flavus and A. parasiticus, particularly lime essential oil, which completely inhibited growth and aflatoxin production of A. flavus at the concentration of 2.25 mg/ml. Target cell damage caused by acid lime essential oil was investigated under transmission electron microscopy. Destructive alterations of plasma and nucleus membrane, loss of cytoplasm, vacuole fusion, and detachment of fibrillar layer were clearly exhibited in essential-oil-treated cells.  相似文献   

14.
Inhibition of Lactic Acid Bacteria by Herbs   总被引:6,自引:0,他引:6  
Increasing concentrations (0.5–8g/liter) of oregano, rosemary, sage, and thyme progressively delayed growth and acid production by Lactobacillus plantarum and Pediococcus acidilactici in a liquid medium. After the bacteriostatic activity was overcome, all four herbs strongly stimulated acid production. The relative inhibitory effect of the herbs toward both microorganisms was oregano ? rosemary = sage gt; thyme. L. plantarum was more resistant than P. acidilactici to the toxic effect of the herbs. Organisms from cultures exhibiting delayed fermentation in the presence of sublethal concentrations of an herb, when subcultured into fresh media containing identical herb concentrations, initiated fermentation without delay, indicating development of resistance to the herb's effect. Moreover, bacteria which had acquired a resistance to one herb were also resistant to the other three herbs.  相似文献   

15.
The aim of this study was to find an alternative to synthetic fungicides currently used in the control of devastating fungal pathogen Botrytis cinerea, the causal agent of grey mould disease of tomato. Antifungal activities of essential oils obtained from aerial parts of aromatic plants, which belong to the Lamiacea family such as origanum (Origanum syriacum L. var. bevanii), lavender (Lavandula stoechas L. var. stoechas) and rosemary (Rosmarinus officinalis L.), were investigated against B. cinerea. Contact and volatile phase effects of different concentrations of the essential oils were found to inhibit the growth of B. cinerea in a dose-dependent manner. Volatile phase effects of essential oils were consistently found to be more effective on fungal growth than contact phase effect. A volatile vapour of origanum oil at 0.2 μg/ml air was found to completely inhibit the growth of B. cinerea. Complete growth inhibition of pathogen by essential oil of lavender and rosemary was, however, observed at 1.6 μg/ml air concentrations. For the determination of the contact phase effects of the tested essential oils, origanum oil at 12.8 μg/ml was found to inhibit the growth of B. cinerea completely. Essential oils of rosemary and lavender were inhibitory at relatively higher concentrations (25.6 μg/ml). Spore germination and germ tube elongation were also inhibited by the essential oils tested. Light and scanning electron microscopic (SEM) observations revealed that the essential oils cause considerable morphological degenerations of the fungal hyphae such as cytoplasmic coagulation, vacuolations, hyphal shrivelling and protoplast leakage and loss of conidiation. In vivo assays with the origanum essential oil, being the most efficient essential oil, under greenhouse conditions using susceptible tomato plants resulted in good protection against grey mould severity especially as a curative treatment. This study has demonstrated that the essential oils are potential and promising antifungal agents which could be used as biofungicide in the protection of tomato against B. cinerea.  相似文献   

16.
Essential oils of clove (Syzygium aromaticum L.), fennel (Foeniculum vulgare Miller), cypress (Cupressus sempervirens L.), lavender (Lavandula angustifolia), thyme (Thymus vulgaris L.), herb-of-the-cross (Verbena officinalis L.), pine (Pinus sylvestris) and rosemary (Rosmarinus officinalis) were tested for their antimicrobial activity on 18 genera of bacteria, which included some important food pathogen and spoilage bacteria. Clove essential oil showed the highest inhibitory effect, followed by rosemary and lavender. In an attempt to evaluate the usefulness of these essential oils as food preservatives, they were also tested on an extract made of fish, where clove and thyme essential oils were the most effective. Then, gelatin–chitosan-based edible films incorporated with clove essential oil were elaborated and their antimicrobial activity tested against six selected microorganisms: Pseudomonas fluorescens, Shewanella putrefaciens, Photobacterium phosphoreum, Listeria innocua, Escherichia coli and Lactobacillus acidophilus. The clove-containing films inhibited all these microorganisms irrespectively of the film matrix or type of microorganism. In a further experiment, when the complex gelatin–chitosan film incorporating clove essential oil was applied to fish during chilled storage, the growth of microorganisms was drastically reduced in gram-negative bacteria, especially enterobacteria, while lactic acid bacteria remained practically constant for much of the storage period. The effect on the microorganisms during this period was in accordance with biochemical indexes of quality, indicating the viability of these films for fish preservation.  相似文献   

17.
Abstract: GC‐FID and GC‐MS analysis of essential oil from oregano leaves (Origanum compactum) resulted in the identification of 46 compounds, representing more than 98% of the total composition. Carvacrol was the predominant compound (36.46%), followed by thymol (29.74%) and p‐cymene (24.31%). Serial extractions with petroleum ether, ethyl acetate, ethanol, and water were performed on aerials parts of Origanum compactum. In these extracts, different chemical families were characterized: polyphenols (gallic acid equivalent 21.2 to 858.3 g/kg), tannins (catechin equivalent 12.4 to 510.3 g/kg), anthocyanins (cyanidin equivalent 0.38 to 5.63 mg/kg), and flavonoids (quercetin equivalent 14.5 to 54.7 g/kg). The samples (essential oil and extracts) were subjected to a screening for antioxidant (DPPH and ABTS assays) and antimalarial activities and against human breast cancer cells. The essential oil showed a higher antioxidant activity with an IC50= 2 ± 0.1 mg/L. Among the extracts, the aqueous extract had the highest antioxidant activity with an IC50= 4.8 ± 0.2 mg/L (DPPH assay). Concerning antimalarial activity, Origanum compactum essential oil and ethyl acetate extract showed the best results with an IC50 of 34 and 33 mg/mL, respectively. In addition, ethyl acetate extract (30 mg/L) and ethanol extract (56 mg/L) showed activity against human breast cancer cells (MCF7). The oregano essential oil was considered to be nontoxic.  相似文献   

18.
The essential oils of clove bud, cinnamon bark and thyme, and their individual compounds including allyl isothiocyanate (AIT), carvacrol, cinnamaldehyde, cinnamic acid, eugenol, and thymol were initially assessed for antimicrobial activity against 9 lactic acid bacteria (LAB) species. Carvacrol and thymol were the most inhibitory with MICs of 0.1% (v/v and w/v, respectively). Cinnamaldehyde, cinnamon bark oil, clove bud oil, eugenol, and thyme oil were moderately inhibitive (MICs = 0.2% v/v), while cinnamic acid required a concentration of 0.5% (w/v). AIT was not effective with MICs in excess of concentrations tested (0.75% v/v). The bactericidal capability of the oil components carvacrol, cinnamaldehyde, eugenol, and thymol were further examined against Pediococcus acidilactici, Lactobacillus buchneri, and Leuconostoc citrovorum. Thymol at 0.1% (w/v) was bactericidal against L. citrovorum (>4‐log reduction), but resulted in a 2‐log CFU/mL reduction against L. buchneri and P. acidilactici. Cinnamaldehyde at 0.2% to 0.25% (v/v) was effective against L. citrovorum, L. buchneri, and P. acidilactici, resulting in a >2‐log reduction. All 3 organisms were susceptible to 0.2% carvacrol with >3‐log reduction observed after exposure for 6 h. Eugenol was the least effective. Concentrations of 0.2% and 0.25% (v/v) were needed to achieve an initial reduction in population, >3‐log CFU/mL after 6 h exposure. However, at 0.2%, P. acidilactici and L. buchneri recovered to initial populations in 48 to 72 h. Results indicate essential oils have the capacity to inactivate LAB that are commonly associated with spoilage of shelf stable low‐acid foods.  相似文献   

19.
Antifungal activity of Allium tuberosum (AT), Cinnamomum cassia (CC), and Pogostemon cablin (Patchouli, P) essential oils against Aspergillus flavus strains 3.2758 and 3.4408 and Aspergillus oryzae was tested at 2 water activity levels (aw: 0.95 and 0.98). Main components of tested essential oils were: allyl trisulfide 40.05% (AT), cinnamaldehyde 87.23% (CC), and patchouli alcohol 44.52% (P). The minimal inhibitory concentration of the plant essential oils against A. flavus strains 3.2758 and 3.4408 and A. oryzae was 250 ppm (A. tuberosum and C. cassia), whereas Patchouli essential oil inhibited fungi at concentration > 1500 ppm. The essential oils exhibited suppression effect on colony growth at all concentrations (100, 175, and 250 ppm for A. tuberosum; 25, 50, and 75 for C. cassia; 100, 250, and 500 for P. cablin essential oil). Results of the study represent a solution for possible application of essential oil of C. cassia in different food systems due to its strong inhibitory effect against tested Aspergillus species. In real food system (table grapes), C. cassia essential oil exhibited stronger antifungal activity compared to cinnamaldehyde.  相似文献   

20.
BACKGROUND: The aim of this research was to determine essential oil composition, phenolic constituents and antioxidant properties of Turkish oregano (Origanum onites L.) leaves harvested during the months of June to September. RESULT: The maximum essential oil yield in the leaves appeared in the middle of July. The main components of oregano oil were carvacrol, thymol, γ‐terpinene, p‐cymene, α‐terpinene and α‐pinene. Carvacrol was highest in the July harvest. The maximum extract yield was found in September. Oil distilled from early‐season (June) harvested leaves had the highest antioxidant ability, expressed as low concentration providing 50% inhibition of free radical scavenging activity and high levels of reducing/antioxidant capacity. Twelve phenolic compounds of oregano extract were identified and the main components were found to be rosmarinic acid and acecetin. The maximum rosmarinic acid and acecetin were found in harvests of July and June, respectively. Total phenolic contents, free radical scavenging activities and reducing/antioxidant capacities were found to be highest in the July harvest. DISCUSSION: All yields, chemical compositions, free radical scavenging activities and reducing/antioxidant capacities of extracts and essential oils of Turkish oregano changed importantly depending on vegetative periods of growing season. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号