首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a new fractionally-spaced maximum a posteriori (MAP) equalizer for data transmission over frequency-selective fading channels. The technique is applicable to any standard modulation technique. The MAP equalizer uses an expanded hypothesis trellis for the purpose of joint channel estimation and equalization. The fading channel is estimated by coupling minimum mean square error techniques with the (fixed size) expanded trellis. The new MAP equalizer is also presented in an iterative (turbo) receiver structure. Both uncoded and conventionally coded systems (including iterative processing) are studied. Even on frequency-flat fading channels, the proposed receiver outperforms conventional techniques. Simulations demonstrate the performance of the proposed equalizer  相似文献   

2.
In this paper, a doubly iterative receiver is proposed for joint turbo equalization, demodulation, and decoding of coded binary continuous-phase modulation (CPM) in multipath fading channels. The proposed receiver consists of three soft-input soft-output (SISO) blocks: a front-end soft-information-aided minimum mean square error (MMSE) equalizer followed by a CPM demodulator and a back-end channel decoder. The MMSE equalizer, combined with an a priori soft-interference canceler (SIC) and an a posteriori probability mapper, forms a SISO processor suitable for iterative processing that considers discrete-time CPM symbols which belong to a finite alphabet. The SISO CPM demodulator and the SISO channel decoder are both implemented by the a posteriori probability algorithm. The proposed doubly iterative receiver has a central demodulator coupled with both the front-end equalizer and the back-end channel decoder. A few back-end demodulation/decoding iterations are performed for each equalization iteration so as to improve the a priori information for the equalizer. As presented in the extrinsic information transfer (EXIT) chart analysis and simulation results for different multipath fading channels, this provides not only faster convergence to low bit error rates, but also lower computational complexity.  相似文献   

3.
水声信道均衡中基于信道估计的均衡方法理论上具有更优的均衡性能,但较高的计算复杂度限制了算法的实际应用。针对这一问题,该文首先基于Kalman滤波和Turbo均衡提出一种迭代Kalman均衡器,实现了基于软符号的迭代信道估计与迭代Kalman均衡,且复杂度较常规方法降低约1个数量级。其次,针对单一均衡算法和单一方向Turbo均衡器存在的误差传递现象,设计了基于迭代Kalman均衡器与改进成比例归一化LMS (IPNLMS)自适应均衡器相结合的混合双向Turbo均衡器,提高了自适应均衡器的收敛速度和均衡性能,并通过双向均衡结构带来的增益改善了符号估计误差传递的现象。理论分析与仿真实验验证了该文算法的有效性。  相似文献   

4.
Turbo均衡是一种将Turbo原理和均衡技术结合起来的技术。他通过反复均衡和信道译码来提高接收机性能。针时瑞利衰落信道,采用基于线性滤波器的软输入/软输出均衡器来消除码间干扰,其系数由最小均方误差准则确定。译码器采用最大后验概率算法时卷积码译码。考虑到瑞利衰落信道为随机信道,用非相干检测时信道进行估计。接收机通过联合均衡和译码以充分利用已经获得的信息,实现信道估计及信道均衡与信道译码的迭代更新。仿真结果表明其性能不仅远远优于非迭代系统.而且在信噪比高于4dB时几乎可以完全消除符号间干扰的影响,与MAPSE相比其复杂度大大降低。  相似文献   

5.
We investigate the performance of a turbo equalization scheme over frequency-selective fading channels, where a soft-output sequential algorithm is employed as the estimation algorithm. The advantage of this scheme comes from the low computational complexity of the sequential algorithm, which is only linearly dependent on the channel memory length. Simulation results of an 8-PSK trellis-coded modulation (TCM) system show that the performance of this scheme suffers approximately 2-dB loss compared with that of the turbo max-log maximum a posteriori (MAP) probability equalizer after 5 iterations  相似文献   

6.
Decoding of space-time codes in frequency-selective fading channels is considered. The approach is based on iterative soft-in soft-out equalization and decoding. It is applicable to space-time coded systems that deploy symbol/bit interleavers. We focus on the equalization stage by extending the Ungerboeck equalizer formulation to a multiple-input multiple-output time-variant channel. The resulting structure comprises a bank of matched filters, followed by an a posteriori probabilities calculator that runs the Bahl-Cocke-Jelinek-Raviv/maximum a posteriori algorithm with an appropriate metric. Simulation results are reported for space-time bit-interleaved codes designed over the enhanced data rates for GSM evolution (EDGE) air interface.  相似文献   

7.
 Turbo均衡技术是水声相干通信克服信道多径、消除码间干扰(ISI)的有效工具。Turbo均衡实际使用时需要对时变、多径信道进行良好的估计。为了提高信道估计的效果,该文基于时变横向滤波和相位旋转信道模型,提出一种水声通信Turbo均衡中的软迭代信道估计算法。该算法采用快速自优化最小均方算法得到各数据符号处的横向滤波器系数矢量并与二阶锁相环联合优化计算。通过仿真比较,该算法明显优于硬迭代信道估计算法,且相位估计性能优于其他文献中的软迭代信道估计算法。在海上试验中,水声通信距离5 km,方向近似垂直,接收阵起伏周期10 s,起伏幅度5 m左右,在此情况下进行数据采集。将该算法用于对海试数据的单通道Turbo均衡处理,实现无误码输出,验证了所提算法在软迭代信道相位估计方面的优势。  相似文献   

8.
Orthogonal frequency division multiplexing (OFDM) system suffers extra performance degradation in fast fading channels due to intercarrier interference (ICI). Combining frequency domain equalization and bit-interleaved coded modulation (BICM), the iterative receiver is able to harvest both temporal and frequency diversity. Realizing that ICI channels are intrinsically ISI channels, this paper proposes a soft-in soft-out (SISO) maximum a posteriori (MAP) equalizer by extending Ungerboeck's maximum likelihood sequence estimator (MLSE) formulation to ICI channels. The SISO MAP equalizer employs BCJR algorithm and computes the bit log-likelihood ratios (LLR) for the entire received sequence by efficiently constructing a trellis that takes into account of the ICI channel structure. A reduced state (RS) formulation of the SISO MAP equalizer which provides good performance/complexity tradeoff is also described. Utilizing the fact that ICI energy is clustered in adjacent subcarriers, frequency domain equalization is made localized. This paper further proposes two computational efficient linear minimum mean square error (LMMSE) based equalization methods: recursive q-tap SIC-LMMSE equalizer and recursive Sliding-Window (SW) SIC-LMMSE equalizer respectively. Simulations results demonstrate that the iterative SISO RS-MAP equalizer achieves the performance of no ICI with normalized Doppler frequency fdTs up to 20.46% in realistic mobile WiMAX environment.  相似文献   

9.
This paper deals with a receiver scheme where adaptive equalization and channel decoding are jointly optimized in an iterative process. This receiver scheme is well suited for transmissions over a frequency-selective channel with large delay spread and for high spectral efficiency modulations. A low-complexity soft-input soft-output M-ary channel decoder is proposed. Turbo equalization allows intersymbol interference to be reduced drastically. For most time-invariant discrete channels, the turbo-equalizer performance is close to the coded Gaussian channel performance, even for low signal-to-noise ratios. Finally, results over a time-varying frequency-selective channel proves the excellent behavior of the turbo equalizer  相似文献   

10.
Minimum mean squared error equalization using a priori information   总被引:11,自引:0,他引:11  
A number of important advances have been made in the area of joint equalization and decoding of data transmitted over intersymbol interference (ISI) channels. Turbo equalization is an iterative approach to this problem, in which a maximum a posteriori probability (MAP) equalizer and a MAP decoder exchange soft information in the form of prior probabilities over the transmitted symbols. A number of reduced-complexity methods for turbo equalization have been introduced in which MAP equalization is replaced with suboptimal, low-complexity approaches. We explore a number of low-complexity soft-input/soft-output (SISO) equalization algorithms based on the minimum mean square error (MMSE) criterion. This includes the extension of existing approaches to general signal constellations and the derivation of a novel approach requiring less complexity than the MMSE-optimal solution. All approaches are qualitatively analyzed by observing the mean-square error averaged over a sequence of equalized data. We show that for the turbo equalization application, the MMSE-based SISO equalizers perform well compared with a MAP equalizer while providing a tremendous complexity reduction  相似文献   

11.
This paper addresses the issue of iterative space–time equalization for multiple-input–multiple-output (MIMO) frequency-selective fading channels. A new soft equalization concept based on successive interference cancellation (SIC) is introduced for a space–time bit-interleaved coded modulation (STBICM) transmission. The proposed equalizer allows us to separate intersymbol interference (ISI) and multiantenna interference (MAI) functions. Soft ISI is successively suppressed using a low-complexity suboptimum minimum mean square error (MMSE) criterion. The decoupling of ISI and MAI offers more flexibility in the design of the whole space–time equalizer. Different multiantenna detection criteria can be considered, ranging from simple detectors to the optimal maximum a posteriori (MAP) criterion. In particular, we introduce two soft equalizers, which are called SIC/SIC and SIC/MAP, and we show that they can provide a good performance-to-complexity tradeoff for many system configurations, as compared with other turbo equalization schemes. This paper also introduces an MMSE-based iterative channel state information (CSI) estimation algorithm and shows that attractive performance can be achieved when the proposed soft SIC space–time equalizer iterates with the MMSE-based CSI estimator.   相似文献   

12.
基于DDEA算法的短波信道Turbo均衡研究   总被引:1,自引:0,他引:1  
针对数据引导均衡算法(DDEA)的缺陷,受到Turbo均衡中迭代思想的启发,提出一种基于数据引导均衡技术的短波迭代信道估计、均衡和译码算法,不仅均衡和译码之间互相传递软信息,信道估计器使用的也是译码器反馈的软信息,通过每次迭代时软信息质量的改善,提高系统的可靠性;通过多次迭代信道估计器输出的信道参数很接近当前帧的实际信...  相似文献   

13.
An iterative receiver for a space-time trellis coded system in frequency-selective fading channel is proposed. It performs channel gain estimation and sequence detection by using the expectation-maximization (EM) algorithm. Channel order estimation is included in the receiver to avoid unnecessary trellis computations by using the conditional model order estimator (CME). In addition, three modifications to the original CME criterion are proposed to improve the estimation accuracy. Simulation results show that the proposed receiver has a slight degradation in frame error rate performance to the known channel maximum likelihood receiver. Moreover, it outperforms the conventional fixed long-tap length EM receiver with a lesser complexity. Furthermore, the proposed modifications to the CME criterion improve the channel order estimation accuracy, thus minimizing unnecessary computations.  相似文献   

14.
We introduce an iterative joint channel and data estimation receiver that exploits both the power of pilot-symbol assisted modulation (PSAM) and turbo coding for fading channels. The key innovation is a low-complexity soft channel estimator which divides a processing block into overlapped cells and performs maximum a posteriori (MAP) sequence estimation and MMSE filtering based on the received signal and extrinsic information delivered by the soft channel decoder. Simulation results show that for turbo-coded PSAM systems under time-variant fading the proposed receiver offers significant performance gains over a non-iterative receiver and two other cancellation schemes  相似文献   

15.
We propose an iterative rake receiver structure using an optimum semi-blind channel estimation algorithm for ds-cdma mobile communication systems. This receiver performs an iterative estimation of the channel according to the maximum a posteriori criterion, using the expectation-maximization algorithm. This estimation process requires a convenient representation of the discrete multipath fading channel based on the Karhunen-Loève orthogonal expansion theorem. The rake receiver uses pilot as well as unknown control and data symbols optimally for improving channel estimation quality. Moreover, it can take into account the coded structure of all unknown transmitted symbols when channel estimation quality is poor or unsatisfactory. The validity of the proposed method is highlighted by simulation results obtained for the FDD mode of the umts interface.  相似文献   

16.
The radio interface EDGE (Enhanced Data rates for Global Evolution) is currently being standardized as an evolutionary path from GSM and TDMA-IS136 for third-generation high-speed data wireless systems. For the EDGE system with multiple antennas, spatial-temporal equalization (STE) can reduce intersymbol interference and co-channel interference, thereby increasing the capacity and range. In this paper, we propose two new techniques to improve the performance of a previously proposed STE: a fast timing recovery algorithm for a selective time-reversal equalizer and a two-stage soft-output equalizer. The new timing recovery algorithm determines the estimated burst timing and processing direction by computing the minimum mean-square error (MMSE) for decision feedback equalizers in both the forward and reverse time directions. The two-stage soft-output equalizer is the cascade of a delayed decision-feedback sequence estimator (DDFSE) and maximum a posteriori probability (MAP) estimator. The DDFSE provides better noise variance estimation and channel truncation for the following MAP. The performance of the new STE is evaluated for the EDGE. At 10% block error rate, the two-branch receiver requires a 3-7-dB lower signal-to-interference ratio (SIR) than the previous approach. Compared with the one-branch receiver, the two-branch receiver requires a 4-dB lower SNR with noise only, and a 10-27-dB lower SIR with a single interferer  相似文献   

17.
In this paper, we derive an optimal detector for pilot-assisted transmission in Rayleigh fading channels with imperfect channel estimation. The classical approach is based on obtaining channel estimates and treating them as perfect in a minimum distance detector (this is called mismatched detector). The optimal detector jointly processes the received pilot and data symbols to recover the data. The optimal detector is specified for fast frequency-flat fading channels.We consider spline approximation of the channel gain time variations and compare the detection performance of different mismatched detectors with the optimal one. Further, we investigate the detection performance of an iterative receiver in a system transmitting turbo-encoded data, where a channel estimator provides either maximum likelihood estimates, minimum mean square error (MMSE) estimates or statistics for the optimal detector. Simulation results show that the optimal detector outperforms the mismatched detectors. However, the improvement in the detection performance compared to the mismatched detector with the MMSE channel estimates is modest.  相似文献   

18.
An iterative pilot-symbol aided modulation (PSAM) channel estimation approach is proposed for vertical Bell Laboratories layered space-time (V-BLAST) orthogonal frequency division multiplexing systems operating on frequency-selective fading channels. Since the signals at the receive antennas are the superposition of signals from multiple transmit antennas, accurate channel estimates are crucial for good error performance. Furthermore, the time selectivity of the fading channels leads to inter-carrier interference (ICI). While ICI can be ignored for slow fading channels, it should be mitigated for fast fading channels. This paper proposes an ICI mitigation scheme for time-varying channels. We also propose an iterative channel estimator with low-complexity. Simulation results demonstrate the usefulness of the proposed algorithm on frequency-selective fading channels.  相似文献   

19.
用于盲接收的turbo均衡与迭代信道估计   总被引:1,自引:0,他引:1  
Turbo均衡是一种将信道均衡和差错控制译码联合迭代处理的均衡机制,与传统的均衡器相比,能在更低的信噪比条件下克服严重信道失真导致的符号间干扰(ISI)。该文提出一种用于盲接收的turbo均衡和迭代信道估计方案,不依赖于训练序列或发送符号的先验知识,采用初始盲均衡处理来启动迭代信道估计和turbo均衡。在该方案中,初始盲均衡算法的选择是十分关键的,它需要在恶劣的信道条件为后续迭代处理的启动提供足够的先验信息。该文根据turbo均衡的特点,选择了超指数算法作为初始盲均衡。仿真结果表明,该文提出的用于盲接收的turbo均衡方案是有效的。  相似文献   

20.
A practically interesting approach for iterative channel estimation, multiuser detection, and single-user decoding based on maximum a posteriori symbol-by-symbol estimation for direct sequence/code-division multiple-access (DS-CDMA) is proposed. The receiver relies on the output of a bank of matched filters for each user and each path, and combines interference cancellation with iterated soft-decision feedback to improve channel estimation accuracy and data symbol reliability in course of a few iterations. We show that in this way, near single-user channel phase and amplitude estimation accuracy is achieved for frequency-selective fading channels, even in highly loaded systems, and illustrate that reliable data symbol estimation can be performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号