首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的 研究钨极惰性气体保护焊(TIG)和搅拌摩擦焊(FSW)对2219铝合金焊接接头疲劳性能的影响,并探究这2种不同焊接技术条件下焊接接头疲劳裂纹的产生与裂纹扩展原理,了解2种焊接接头的抗裂纹扩展能力,为工程实践应用提供数据参考。方法 采用疲劳裂纹扩展试验方法,测试上述2种焊接工艺条件下焊缝金属和热影响区组织的疲劳裂纹扩展速率da/d N和阈值,使用光学显微镜和扫描电子显微镜观察并分析金相组织和疲劳断口形貌特征。结果 疲劳裂纹倾向于沿裂纹处萌生,裂纹的存在成为主要的裂纹扩展源头,有利于加速裂纹向前延伸。热影响区由于组织结构不均匀,不同位置的晶粒尺寸存在明显差异,疲劳裂纹扩展路径倾向于沿靠近焊缝一侧向靠近母材区域扩展。TIG焊接工艺下焊缝金属和热影响区的裂纹扩展速率明显低于FSW焊接工艺下的焊缝金属和热影响区,与此同时,TIG焊接接头表现出优良的抗疲劳裂纹扩展性能。结论 通过此研究,建议2219铝合金焊接接头采用TIG焊接工艺,抗疲劳裂纹扩展效果更佳。  相似文献   

2.
The effects of various surface treatment techniques on the fatigue crack growth performance of friction stir welded 2195 aluminum alloy were investigated. The objective was to reduce fatigue crack growth rates and enhance the fatigue life of welded joints. The crack growth rates were assessed and characterized for different peening conditions at a stress ratio (R) of 0.1, and 0.7. The surface and through-thickness residual stress distribution were also investigated and presented for the various regions in the weld. Tensile residual stresses introduced during the welding process were found to become significantly compressive, particularly after laser peening. The effect of the compressive stresses was deemed responsible for increasing the resistance to fatigue crack growth of the welds. The results indicate a significant reduction in fatigue crack growth rates using laser peening compared to shot peening and native welded specimens. This reduced fatigue crack growth rate was comparable to the base unwelded material.  相似文献   

3.
对比分析了搅拌摩擦和氩弧焊两种工艺方法对铝合金焊接接头疲劳性能的影响,建立了焊接接头的S-N曲线,结果表明:在相同的载荷条件下,搅拌磨擦焊接接头的疲劳性能优于氩弧焊接头。搅拌摩擦焊接头疲劳寿命N=106次的疲劳强度值约为59~65MPa之间。对焊接接头显微组织的分析表明:搅拌摩擦焊接接头具有比氩弧焊接头更为细小的晶粒和狭窄的焊接热影响区,阻碍了滑移带的形成和裂纹的扩展,从而提高了接头的疲劳性能。TIG焊接接头疲劳端口分析显示,焊接缺陷是主要的疲劳裂纹源。  相似文献   

4.
6061-T6 铝合金激光焊接接头腐蚀疲劳裂纹扩展   总被引:1,自引:0,他引:1       下载免费PDF全文
目的研究6061-T6铝合金激光焊接接头的腐蚀疲劳裂纹扩展特性,并分析裂纹扩展的影响因素。方法利用光纤激光器,焊接尺寸为150 mm×100 mm×4 mm(焊接方向、横向、熔深方向)的6061-T6铝合金,采用SE(B)三点弯曲疲劳裂纹扩展试验并利用连续降K法,分别在空气和人工海水中进行疲劳裂纹扩展试验,通过使用金相显微镜(OE)和扫描电子显微镜(SEM),对金相结构进行观测分析。结果同样工艺参数的焊接接头,在海水中疲劳裂纹门槛值(4.063 016 MPa·m~(0.5))大于空气中的门槛值(3.479 166 MPa·m~(0.5));在疲劳裂纹扩展中速区(da/dN10~(-5) mm/cycle)时,海水焊接接头疲劳裂纹扩展速率大于空气中的,低速区(da/d N10~(-5) mm/cycle)则小于在空气中的。结论成形良好的焊缝、晶粒细小的焊缝组织有助于接头疲劳裂纹扩展性能的提高;中速区,海水中疲劳裂纹扩展速率偏大,主要是由腐蚀条件下焊缝裂纹尖端阳极溶解和交变载荷共同作用导致;低速区,海水中疲劳裂纹扩展速率偏小,主要原因是腐蚀产物堆积于疲劳裂纹扩展尖端,产生较强裂纹闭合效应。  相似文献   

5.
While the fatigue behavior of die cast aluminum as well as welded aluminum wrought alloys have been subject of several studies, no systematic work has been carried out on hybrid structures made as a combination of welded sand castings and wrought alloys. Aim of the present study is to correlate the monotonic and cyclic deformation behavior of thin sheet welded joints with the microstructure in the heat affected zone of the material combination sand cast EN AC‐Al Si7Mg0.3 and wrought alloy EN AW‐Al Si1MgMn (EN AW‐6082). The metal sheets were welded using a metal inert gas cold metal transfer process under variation of the welding gap, the heat treatment parameters, as well as the surface finishes. It was demonstrated by Wöhler diagrams based on bending fatigue tests that the fatigue life could be increased for the welded and heat treated specimens as compared to the as‐received cast specimens. By means of optical microscopy this effect was attributed to microstructural changes due to the optimized welding and heat treatment process. A detailed analysis of the mechanical tests was possible by the application of an optical 3D strain analysis.  相似文献   

6.
建立了铝合金焊接接头的S-N曲线,对比分析了搅拌摩擦和氩弧焊两种工艺对其焊接接头疲劳性能的影响,结果表明:在载荷相同的条件下,铝合金搅拌磨擦焊接接头的疲劳性能优于氩弧焊接头,搅拌摩擦焊接头的疲劳寿命N=106次的疲劳强度为59-65 MPa,搅拌摩擦焊接接头具有比氩弧焊接头更为细小的晶粒和狭窄的焊接热影响区,阻碍了滑移带的形成和裂纹的扩展,从而提高了接头的疲劳性能,铝合金焊接接头的缺陷是主要的疲劳裂纹源.  相似文献   

7.
Detailed investigations of microstructural feature, mechanical property, fatigue strength, and damage mechanism were conducted on hybrid laser welded 7020‐T651 aluminum alloys used into high‐speed railway vehicles. The results show that the hybrid laser welding process can induce significant changes of microstructures and alloying elements, together with numerous gas pores. Such local modifications degrade the fatigue performance. The tensile strength of welded joints was approximately 74% with respect to the base metal, thus satisfying the design standard. The fatigue property was determined in the low and high cycle regimes. It was found that the fatigue strength of welded joints was fairly inferior to that of the base metal, but far higher than the IIW recommended value. Furthermore, welding defects were well believed to contribute to the shorter fatigue life. The small fatigue crack growth presented highly discontinuous and inhomogeneous due to microstructure and porosity. By contrast, the crack stable growth stage was less sensitive to microstructural features of hybrid welded joints.  相似文献   

8.
Behavior of fatigue crack which was propagated at some representative areas in the friction stir welded (FSWed) joint of aluminum alloy 6063-T5 was studied. By extracting the T–L orientation specimens so that the loading axis on the fatigue test and the crack propagation direction were transverse and longitudinal to the welding direction, respectively, the crack propagation tests were carried out for both the as-welded and post-weld heat treated (PWHTed) FSWs at room temperature and 200 °C. The experiments showed that the fatigue crack propagation (FCP) rates were sensitive to the propagating location, the test temperature, and the PWHT condition as well. It was also found that the different FCP rates were driven by the microstructural influences in and around the welded zone. While the residual stress was remarkable in the shoulder limit areas, it had a minor effect on the FCP behavior.  相似文献   

9.
目的 分析铝合金焊接接头微弧氧化过程中色差产生的原因。方法 采用单激光和激光-MIG复合焊2种焊接方法焊接2A12铝合金,利用RGB值定性描述不同焊接试样的色差差异大小,采用金相、SEM和微区XRD观察2A12铝合金单激光和激光-MIG复合焊接头微弧氧化前后的组织、微观形貌和表面物相组成。结果 经微弧氧化处理后,2A12铝合单激光焊焊件的焊缝和母材之间无明显色差,2A12铝合金激光-MIG复合焊焊件的焊缝和母材之间存在明显色差,结合金相组织、表面和截面的SEM形貌以及表面EDS和XRD测试分析结果可知,成分和表面熔融物颗粒的大小不同是铝合金焊接接头微弧氧化色差形成的主要原因,焊接接头的组织对铝合金焊接接头微弧氧化色差的产生没有影响。结论 单激光焊接接头微弧氧化后的氧化色差较激光-MIG复合焊接头的小;铝合金(2A12)焊接接头产生氧化色差主要是因为焊接接头的成分和表面熔融物颗粒大小不同,而组织对色差无影响。  相似文献   

10.
焊接缺陷对铝合金焊接接头疲劳性能的影响   总被引:3,自引:0,他引:3  
测定了Al Mg Si系6061合金两种焊接接头的疲劳性能,介绍了铝合金焊接接头的疲劳特征,分析了焊接接头中缺陷对铝合金焊接接头疲劳性能的影响,认为焊缝中宏观尺度的气孔和未焊透及其分布明显地影响铝合金焊接接头的疲劳性能,当缺陷尺寸足够大且数量较多时,将严重降低焊接接头的疲劳性能。夹杂对铝合金焊接接头疲劳性能也有严重的影响。  相似文献   

11.
Humidity is a key factor affecting the quality of welded joints for high-speed trains. Welded joints made of A7N01S-T5 aluminum alloy were fabricated under five relative environmental humidity conditions: 50%, 60%, 70%, 80%, and 90%. The microstructures of the welded joints were examined using an optical microscope and porosity quantities were calculated from macrographs using image analysis software. The fatigue strength of the welded joints was measured with high-cycle fatigue testing. It was determined that the microstructures and grain sizes in the weld zone and heat-affected zone (HAZ) were similar under different humidity conditions; however, porosity distribution varied significantly. Porosity quantity increased as humidity increased. The weld joint made under the 90% humidity condition had the highest quantity of porosity, while the weld joint made under the 70% humidity condition had the maximum diameter and area of porosity. The weld joint made under the 70% humidity condition also had the lowest fatigue strength. Fracture morphology of fatigue samples showed that the weld joint made under the 70% humidity condition had brittle fracture, while others showed ductile fracture. Therefore, 70% humidity was determined to be the critical humidity level for welding joints in high humidity environment.  相似文献   

12.
Influence of spindle and weld speeds, metal location, direction of spindle rotation, and tool pin length on hooking in lap FSW of dissimilar aluminum alloys and the effect of hook on tensile and fatigue weld strength was studied. Optical images of the cross-section of the specimen welded at different process parameters were analyzed. The results indicate that increased spindle speed, reduced weld speed, higher tool pin length, clockwise spindle rotation, and locating the stronger material at the bottom of the joint increased the size of the hooking defect. Higher weld speeds and very high spindle speeds resulted in lower hook size on the advancing side (AS) compared to the retreating side (RS) of the joint. Welding with low weld speed would result in higher advancing side hook size compared to the retreating side. Friction stir weld joints fabricated with anti-clockwise spindle rotation has been found to have extremely low hook both on the AS and the RS of the joint. The tensile and fatigue strengths of the weld joints and plates are degraded by the hook. The fatigue strength of welded alloys could be improved by a double pass weld, the second pass welded immediately adjacent to the first pass.  相似文献   

13.
We propose a new analytic representation of the diagrams of ultimate stresses for constant fatigue life. The diagrams are constructed according to limited amount of experimental data obtained as a result of fatigue testing of smooth specimens of the metal of welded joints of aluminum alloys. In determining the “hot-spot” stressed state, these diagrams enable us to perform the fatigue analysis of welded aluminum structures with regard for the stress concentration, the level and character of distribution of residual stresses, misalignment in the zone of the joint, and other factors. __________ Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 42, No. 2, pp. 94–98, March–April, 2006.  相似文献   

14.
We generalize the results of investigations into the high-frequency mechanical peening of welded joints of structural steels of different strength grades and aluminum alloys. As a result, we show the high efficiency of using high-frequency mechanical peening for enhancing the fatigue resistance of welded joints of metal structures at the stages of their manufacture and operation. __________ Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 42, No. 1, pp. 56–61, January–February, 2006.  相似文献   

15.
Laser welding is increasingly used for the fabrication of lightweight and cost-effective integral stiffened panels in modern civil aircraft. As these structures age in service, the issue of the effect of corrosion on their damage tolerance requires attention. In this work, laboratory data on the influence of salt fog corrosion on the fatigue behavior of cladded 6156 T4 aluminum alloy laser welded specimens are presented. The experimental investigation was performed on 6156 T4 laser butt welded sheets. Prior to fatigue testing the welded joints were exposed to laboratory salt fog corrosion exposure for 720 h. The results showed that the clad layer offers sufficient corrosion protection both on base metal and the weld. Fatigue testing was followed by standard metallographic analysis in order to identify fatigue crack initiation sites. Crack initiation is located in all welded samples near the weld reinforcement which induces a significant stress concentration. Localized corrosion attack of the clad layer, in the form of pitting corrosion, creates an additional stress concentration which accelerates crack initiation leading to shorter fatigue life relative to the uncorroded samples. The potency of small corrosion pits to act as stress concentration sites has been assessed analytically. The above results indicate that despite the general corrosion protection offered by the clad layer, the localized attack described above leads to inferior fatigue performance, a fact that should be taken under consideration in the design and maintenance of these structures.  相似文献   

16.
Xu  Yaowu  Bao  Rui  Liang  Lu  Li  Zhijie  Tian  Lin 《Journal of Materials Science》2022,57(28):13756-13766
Journal of Materials Science - This paper presents a model for predicting intrinsic fatigue crack growth rates (ICGRs) in welded aluminum plates. The prediction model is based on the Walker...  相似文献   

17.
王元清  顾浩洋  廖小伟 《工程力学》2020,37(1):73-79,134
国内外学者对钢结构的焊缝连接在常温下的疲劳性能进行了广泛的研究,但是所见文献中对构造细节在低温下的疲劳性能研究较少。为此,以Q345B钢材制作了原状处理的侧面和正面角焊缝连接的两组板材试样,采用高频疲劳试验机在0℃、-20℃、-40℃下进行低温疲劳试验,并进行数据拟合。试验结果发现:对于侧面角焊缝试样而言,低温会提高构造细节的疲劳寿命,而低温对正面角焊缝试样的影响并不明显。低温下的正面角焊缝抗疲劳强度高于侧面角焊缝。正面角焊缝疲劳破坏形式为贯通焊缝裂纹,侧面角焊缝为焊趾向热影响区延伸裂纹。研究结果表明:低温对于不同的构造细节形式的节点疲劳寿命的影响没有统一的结论,有待更多试验进行研究并分析。  相似文献   

18.
The use of 7000 aluminum alloys has an important role in future lightweight structures in the field of mobility due to the low density and high strength. However, these alloys can only be fusion welded to a limited extent because welding defects can rarely be prevented. For this reason, investigations are carried out to identify the most suitable welding parameters for two processes: laser beam and magnetic pulse welding. Herein, laser beam welding is successfully used to manufacture a roll-formed and longitudinally welded pipe made of AA7075 and joined by magnetic pulse welding with a 3D-printed lug-tube made of AlSi10Mg. The fatigue strength of these pipe joints and of laser beam welded butt joint specimens is determined using load-controlled fatigue tests. For the characterization of the specimens, cross sections are prepared and examined metallographically, which reflect the local weld seam geometry in the joining area. A fatigue assessment is made using linear-elastic approaches. The reference radius concept is applied to map the influence of geometric notches on the fatigue strength, assuming linear-elastic stress–strain behavior. It is shown that the recommended notch stress fatigue class FAT 178 (von Mises stress) can be applied for a safe and reliable fatigue assessment.  相似文献   

19.
5083-H111 and 6082-T651 aluminum alloys used particularly in shipbuilding industry especially for the sake of their high corrosion resistance and moderate strength, were welded using Pulsed Robotic Cold Metal Transfer (CMT)-Metal Inert Gas (MIG) technology. Joints were fabricated as both similar and dissimilar alloy welds using plates with a thickness of 6 mm. Non-destructive tests such as visual and radiological examination were conducted before further destructive tests. Tensile, bend and fatigue tests were applied to specimens extracted from welded joints. Fracture surfaces of fatigue samples were examined by light optical microscopy (LOM) and scanning electron microscopy (SEM). Also macro and microstructures of weld zones were investigated and micro hardness profiles were obtained. In accordance with results, CMT-MIG provides good joint efficiency with high welding speed, and good tensile and fatigue performance.  相似文献   

20.
Fatigue crack propagation rates and threshold stress intensity factors were measured for welded joints and base metal by using 200 mm wide centre-cracked specimens. The fatigue crack propagation properties of welded joints were similar in spite of the different zones in which the cracks propagated (ie, in the heat-affected zone and in the weld metal) and the different welding process used (submerged arc welding and gas metal arc welding). They were, however, inferior to those of the base metal. It was revealed by observation of the crack closure that the fatigue cracks were fully open during the whole range of loading, due to the tensile residual stress distribution in the middle part of the welded joints. This observation also explains the lack of a stress ratio effect on the fatigue crack propagation properties of welded joints, and their inferiority to those of the base metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号