首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A concentrator photovoltaic (PV) module, in which solar cells are integrated in V-troughs, is designed for better heat dissipation. All channels in the V-trough channels are made using thin single Al metal sheet to achieve better heat dissipation from the cells under concentration. Six PV module strips each containing single row of 6 mono-crystalline Si cells are fabricated and mounted in 6 V-trough channels to get concentrator V-trough PV module of 36 cells with maximum power point under standard test condition (STC) of 44.5 W. The V-trough walls are used for light concentration as well as heat dissipation from the cells which provides 4 times higher heat dissipation area than the case when V-trough walls are not used for cooling. The cell temperature in the V-trough module remains nearly same as that in a flat plate PV module, despite light concentration. The controlled temperature and increased current density in concentrator V-trough cells results in higher Voc of the module.  相似文献   

2.
A V-trough solar concentrator has been combined with an inclined flat-plate wick-type solar still. Outdoor testing was carried out with and without the solar concentrator on clear days in summer and winter. The equipment was used to investigate the enhancement of the outdoor performance of the wick-type solar still by the solar concentrator.It has been concluded that use of the solar concentrator with the inclined wick-type solar still can lead to a greater fractional increase in still efficiency and productivity on clear days in winter than on clear days in summer.  相似文献   

3.
Photovoltaic pumping systems with solar tracking, coupled to low concentration cavities, have been proposed as a viable alternative to reduce the final cost of the pumped water volume. V-trough concentrators are particularly appropriate for photovoltaic applications since, for certain combinations of the concentration ratio (C) and vertex angle (Ψ), they provide uniform illumination on the region where the modules are located. Water pumping systems are only operational when the irradiance is larger than a minimum irradiance level (IC). Solar tracking increases the average collected irradiance and, for a system operating with a given critical irradiance level (IC), it is verified that the smaller the relationship , the larger the useful energy. Thus, the gain, in terms of pumped water volume, provided by solar tracking systems, can be larger than the gain in collected solar radiation. The combination of both devices, tracking and concentration provides an additional increase of the benefits resulting from the use of solar trackers. By means of the “Utilizability Method”, we estimate the long-term gains of pumped water volume, for tracking systems, with and without concentration, against fixed systems. The long-term water volume has been calculated using the characteristic curve of a tested PVP system with a tracking V-trough concentrator. Results show that, for the climate of the city of Recife (PE-Brazil), the annual pumped water volume of the tracking system is 1.41 times the value obtained with the fixed system. In that case, the gains observed for the collected solar energy were around 1.23. For the PVP system with tracking V-trough concentrator the annual benefits for pumped water volume are around 2.49, while for collected solar radiation we found 1.74. The annualized cost of the cubic meter of pumped water has been estimated for the three configurations. Results show a cost reduction of the order of 19% for the tracking system and of 48% for the concentrating system, when compared to the fixed configuration.  相似文献   

4.
There are various types of solar water heater system available in the commercial market to fulfill different customers’ demand, such as flat plate collector, concentrating collector, evacuated tube collector and integrated collector storage. A cost effective cum easy fabricated V-trough solar water heater system using forced circulation system is proposed. Integrating the solar absorber with the easily fabricated V-trough reflector can improve the performance of solar water heater system. In this paper, optical analysis, experimental study and cost analysis of the stationary V-trough solar water heater system are presented in details. The experimental result has shown very promising results in both optical efficiency of V-trough reflector and the overall thermal performance of the solar water heater.  相似文献   

5.
This paper presents statistical analysis of the behaviour of the electrical performance of commercial crystalline silicon photovoltaic (PV) modules tested in the Solar Test Installation of the European Commission's Joint Research Centre from 1990 up to 2006 to the IEC Standard 61215 and its direct predecessor CEC Specification 503. A strong correlation between different test results was not observed, indicating that the standard is a set of different, generally independent stress factors. The results confirm the appropriateness of the testing scheme to reveal different module design problems related rather to the production quality control than material weakness in commercial PV modules.  相似文献   

6.
Kashif Ishaque 《Solar Energy》2011,85(9):2349-2359
To accurately model the PV module, it is crucial to include the effects of irradiance and temperature when computing the value of the model parameters. Considering the importance of this issue, this paper proposes an improved modeling approach using differential evolution (DE) method. Unlike other PV modeling techniques, this approach enables the computation of model parameters at any irradiance and temperature point using only the information provided by the manufacturer’s data sheet. The key to this improvement is the ability of DE to simultaneously compute all the model parameters at different irradiance and temperature. To validate the accuracy of the proposed model, three PV modules of different types (multi-crystalline, mono-crystalline and thin-film) are tested. The performance of the model is evaluated against the popular single diode model with series resistance Rs. It is found that the proposed model gives superior results for any irradiance and temperature variations. The modeling method is useful for PV simulator developers who require comprehensive and accurate model for the PV module.  相似文献   

7.
In this paper, energy metrics (energy pay back time, electricity production factor and life cycle conversion efficiency) of hybrid photovoltaic (PV) modules have been analyzed and presented for the composite climate of New Delhi, India. For this purpose, it is necessary to calculate (1) the energy consumption in making different components of the PV modules and (2) the annual energy (electrical and thermal) available from the hybrid-PV modules. A set of mathematical relations have been reformulated for computation of the energy metrics. The manufacturing energy, material production energy, energy use and distribution energy of the system have been taken into account, to determine the embodied energy for the hybrid-PV modules. The embodied energy and annual energy outputs have been used for evaluation of the energy metrics. For hybrid PV module, it has been observed that the EPBT gets significantly reduced by taking into account the increase in annual energy availability of the thermal energy in addition to the electrical energy. The values of EPF and LCCE of hybrid PV module become higher as expected.  相似文献   

8.
Performance evaluation of solar PV/T system: An experimental validation   总被引:6,自引:2,他引:6  
In this communication, an attempt has been made to develop a thermal model of an integrated photovoltaic and thermal solar (IPVTS) system developed by previous researchers. Based on energy balance of each component of IPVTS system, an analytical expression for the temperature of PV module and the water have been derived. Numerical computations have been carried out for climatic data and design parameters of an experimental IPVTS system. The simulations predict a daily thermal efficiency of around 58%, which is very close to the experimental value (61.3%) obtained by Huang et al.  相似文献   

9.
In this paper, an attempt has been made to evaluate the overall performance of hybrid PV/thermal (PV/T) air collector. The different configurations of hybrid air collectors which are considered as unglazed and glazed PV/T air heaters, with and without tedlar. Analytical expressions for the temperatures of solar cells, back surface of the module, outlet air and the rate of extraction of useful thermal energy from hybrid PV/T air collectors have been derived. Further an analytical expression similar to Hottel–Whiller–Bliss (HWB) equation for flat plate collector has also been derived in terms of design and climatic parameters. Numerical computations have been carried out for composite climate of New Delhi and the results for different configurations have been compared. The thermal model for unglazed PV/T air heating system has also been validated experimentally for summer climatic conditions. It is observed that glazed hybrid PV/T without tedlar gives the best performance.  相似文献   

10.
This paper is about measurements, analyses and evaluation of residential PV systems in the Japanese Monitoring Program, on which JQA was subsidized by NEDO (New Energy Development and Industrial Technology Organization) that is currently proceeding [NSS R&D] from FY1997 to FY 2000.The aim of this investigation refers, through the data evaluation and analyses, to obtain knowledge required for optimizing design of PV systems, such as system performance, characteristics and regional dependency under practical operation and to develop the system evaluation technology on the design parameter method.  相似文献   

11.
The primary purpose of this work is to review the literature about what is and is not known about using ethylene vinyl acetate (EVA0 copolymer as the encapsulant (or pottant) material in photovoltaic (PV) modules. Secondary purposes include elucidating the complexity of the encapsulation problem, providing an overview about encapsulation of PV cells and modules, providing a historical overview of the relevant research and development on EVA, summarizing performance losses reported for PV systems deployed since ca. 1981, and summarizing the general problems of polymer stability in a solar environment. We also provide a critical review of aspects of reported work for cases that we believe are important.Failure modes resolved in the early work to establish reliability of deployed modules and the purposes and properties of pottants, are summarized. Typical performance losses in large field-deployed, large-scale systems ranging from 1% to 10% per year are given quantitatively, and qualitative reports of EVA discoloration are summarized with respect to ultraviolet (UV), world-wide location and site dependence.The general stability of polymers and their desirable bulk properties for solar utilization are given. The stabilization formulation for EVA, its effectiveness, and changes in it during degradation are discussed. The degradation mechanisms for the base resin, e.g., unstabilized Elvax 150TM, and stabilized EVA are indicated for literature dating to the early 1950s, and the role played by unsaturated chromophores is indicated. The limited number of studies relating discoloration and PV cell efficiency are summarized.Observed degradation of EVA or the unstabilized base resin in the laboratory and examples used to measure the degradation are summarized in sections entitled: (1) thermally-induced degradation; (2) photodegradation and photothermal degradation of EVA in different temperature regimes; (3) photobleaching and photodegradation of the UV absorber and cross-linking agent; (4) acetic acid and metal and metal-oxide catalyzed oxidative degradation; and (5) discolaration and PV cell efficiency losses.Processing effects/influences on EVA stability are discussed in sections entitled: (1) EVA raw materials and extruded, uncured films; (2) thermal encapsulation processes; (3) effects of lamination, curing, and curing peroxide on gel content and chromophores formed; and (4) incomplete shielding of curing-generated chromophores. A summary is given for the limited number of accelerated lifetime testing efforts and examples of erroneous service lifetime predictions for EVA are discussed. The known factors that effect the discoloration rate of several EVA formulations are discussed in which the reduction in rate by using UV-absorbing superstrates is a prime example. A summary is given of what is and is not known about EVA degradation mechanisms, degradation from exposures in field-deployed modeules and/or laboratory testing, and factors that contribute to EVA stability or degradation. Finally, conclusions about using Elvax 150 in EVA formulations are summarized, and future prospects for developing the next-generation pottant for encapsulating PV modules are discussed.  相似文献   

12.
PV system sizing using observed time series of solar radiation   总被引:4,自引:0,他引:4  
Sizing represents an important part of photovoltaic system design. This paper describes a sizing procedure based on the observed time series of solar radiation. Using a simple geometrical construction, the sizing curve is determined as a superposition of contributions from individual climatic cycles of low daily solar radiation. Unlike the traditional methods based on loss-of-load probability, the reliability of supply enters in this method through the length of the time series of data used in the analysis. The method thus resembles techniques used in other branches of engineering where extreme values are considered as functions of certain recurrence intervals.  相似文献   

13.
Accurate hourly photovoltaic (PV) output data are useful for engineering design, cost-effectiveness evaluation, rate design, system operation, transmission planning, risk management, and policy analysis. However, a large sample of hourly metered PV data is seldom available, and engineering simulation is often the only practical means to obtain hourly PV output. Based on an analysis of net energy metering (NEM) funded by the California Public Utilities Commission (CPUC), this paper presents statistically adjusted engineering (SAE) modeling of metered output of 327 roof-top PV installations in California for the 12-month period of January–December 2008. The key findings are: (a) the metered PV output is on an average 80–90% of simulated performance; and (b) the simulated data have useful information for accurately predicting metered PV performance. Plausible causes for (a) include incomplete input data for PV simulation, occasional failures in metered data recording, and less than ideal conditions for PV performance in the real world.  相似文献   

14.
This article presents an overview on the research and development and application aspects for the hybrid photovoltaic/thermal (PV/T) collector systems. A major research and development work on the photovoltaic/thermal (PVT) hybrid technology has been done since last 30 years. Different types of solar thermal collector and new materials for PV cells have been developed for efficient solar energy utilization. The solar energy conversion into electricity and heat with a single device (called hybrid photovoltaic thermal (PV/T) collector) is a good advancement for future energy demand. This review presents the trend of research and development of technological advancement in photovoltaic thermal (PV/T) solar collectors and its useful applications like as solar heating, water desalination, solar greenhouse, solar still, photovoltaic-thermal solar heat pump/air-conditioning system, building integrated photovoltaic/thermal (BIPVT) and solar power co-generation.  相似文献   

15.
A simulation model of finite differences describing a water heating system using a Hybrid Photovoltaic-Thermal collector manufactured in a copolymer material and running in low flow rate conditions has been developed. It includes the essential thermal transfers. The thermal and electrical performances of this solar system have been studied. The choice of the material and the structure of the solar collector are described. The temperatures evolution is modeled in various parts of the solar system and the stratification of the tank is shown. Average electrical, thermal and global efficiencies are calculated each month. We note the importance of thermal recuperation which can catalyze the development of such systems. The utilization of a copolymer for the total design of the solar collector has numerous advantages as reducing the weight, facilitating the manufacturing and reducing the cost.  相似文献   

16.
In this paper, an integrated combined system of a photovoltaic (glass–glass) thermal (PV/T) solar water heater of capacity 200 l has been designed and tested in outdoor condition for composite climate of New Delhi. An analytical expression for characteristic equation for photovoltaic thermal (PV/T) flat plate collector has been derived for different condition as a function of design and climatic parameters. The testing of collector and system were carried out during February–April, 2007. It is observed that the photovoltaic thermal (PV/T) flat plate collector partially covered with PV module gives better thermal and average cell efficiency which is in accordance with the results reported by earlier researchers.  相似文献   

17.
In this paper, we propose to perform a numerical technique based on genetic algorithms (GAs) to identify the electrical parameters (Is, Iph, Rs, Rsh, and n) of photovoltaic (PV) solar cells and modules. These parameters were used to determine the corresponding maximum power point (MPP) from the illuminated current-voltage (I-V) characteristic. The one diode type approach is used to model the AM1.5 I-V characteristic of the solar cell. To extract electrical parameters, the approach is formulated as a non convex optimization problem. The GAs approach was used as a numerical technique in order to overcome problems involved in the local minima in the case of non convex optimization criteria. Compared to other methods, we find that the GAs is a very efficient technique to estimate the electrical parameters of PV solar cells and modules. Indeed, the race of the algorithm stopped after five generations in the case of PV solar cells and seven generations in the case of PV modules. The identified parameters are then used to extract the maximum power working points for both cell and module.  相似文献   

18.
In this paper, an attempt is made to evaluate the thermal performance of a hybrid photovoltaic thermal (PV/T) air collector system. The two type of photovoltaic (PV) module namely PV module with glass-to-tedlar and glass-to-glass are considered for performance comparison. The results of both PV modules are compared for composite climate of New Delhi. Analytical expression for solar cell, back surface, outlet air temperatures and an overall thermal efficiency are derived for both cases. It is observed that hybrid air collector with PV module glass-to-glass gives better performance in terms of overall thermal efficiency. Parametric studies are also carried out.  相似文献   

19.
Hydrogen fuel can be produced by using solar electric energy from photovoltaic (PV) modules for the electrolysis of water without emitting carbon dioxide or requiring fossil fuels.  相似文献   

20.
Katsumi Kushiya   《Solar Energy》2004,77(6):717-724
The CBD-Zn(O,S,OH)x buffer process is reviewed. Applying this buffer, our highest efficiencies are achieved, such as a circuit (or submodule) efficiency of 14.2% at an aperture area of 864 cm2 on a 30 cm × 30 cm-sized substrate and module efficiencies of 13.4% at an aperture area of 3459 cm2 on a mosaic module in which four 30 cm × 30 cm-sized circuits are connected in parallel and 12.8% at an aperture area of 3456 cm2 on a 30 cm × 120 cm-sized substrate. Our module structure is a cover glass/EVA/MOCVD-BZO window/CBD-Zn(O,S,OH)x buffer/CIGSS surface layer/CIGS absorber/Mo base electrode/soda-lime glass. Development of both the hardware (i.e. CBD apparatus) applicable to the mass production and the suitable control parameters is necessary to establish the robust baseline process for the CBD-Zn(O,S,OH)x buffer. Finding of %T monitoring and post-deposition light soaking in this buffer process contributes not only to improve the reproducibility, but also to enhance the electrical yield and the IV performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号