首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Quantitative information regarding the maximum power point (MPP) of photovoltaic (PV) arrays is crucial for determining and controlling their operation, yet it is difficult to obtain such information through direct measurements. PV arrays exhibit an extremely nonlinear current-voltage (I-V) characteristic that varies with many complex factors related to the individual cells, which makes it difficult to ensure an optimal use of the available solar energy and to achieve maximum power output in real time. Finding ways to obtain the maximum power output in real time under all possible system conditions are indispensable to the development of feasible PV generation systems. The conventional methods for tracking the MPP of PV arrays suffer from a serious problem that the MPP cannot be quickly acquired. Based on the p-n junction semiconductor theory, we develop a prediction method for directly estimating the MPP for power tracking in PV arrays. The proposed method is a new and simple approach with a low calculation burden that takes the resistance effect of the solar cells into consideration. The MPP of PV arrays can be directly determined from an irradiated I-V characteristic curve. The performance of the proposed method is evaluated by examining the characteristics of the MPP of PV arrays depending on both the temperature and irradiation intensity, and the results are discussed in detail. Such performance is also tested using the field data. The experimental results demonstrate that the proposed method helps in the optimization of the MPP control model in PV arrays.  相似文献   

2.
This work presents a Maximum Power Point Tracking (MPPT) based on analyzing the output characteristics of PV array under uniform irradiance and partial shading conditions. In order to carry out MPPT in PV panels, under partial shading conditions a method based on Extremum Seeking Control (ESC) is introduced. In contrast with classic ESC, in this method the double of dithering signal frequency is not used, consequently PV output power has a ripple of a lower frequency. Also the drop which occurs when MPPT system starts to operate in classic ESC method is minimized in this paper. The ESC approach for MPPT in this paper uses a series combination of a Low Pass Filter (LPF) and a High Pass Filter (HPF). These two filters act as a Band Pass Filter (BPF) and let a specific frequency of input power which includes the derivative of PV with respect to its voltage pass through. Finally, the system does not operate in local optimal points for efficient point will be global. The algorithm adds partial shadow judging conditions in ESC method. The system runs the variable step ESC method to realize MPPT when photovoltaic array is under uniform irradiance. Under Partial Shading Condition (PSC), the control method can eliminate the interference of local maximum power point (MPP) to make 23 the PV array running at global MPP. In addition, unlike other methods, the proposed MPPT operates on the global MPPs. The proposed MPP tracker does not add any extra complexity compared to the classical ones. However, it increases significantly the efficiency of the PV installation under PSC. We will show that under uniform irradiance, the proposed MPPT leads to faster performances than classical approaches.  相似文献   

3.
As the solar PV system (SPVS) suffered from an unavoidable complication that it has nonlinearity in I–V curves, the optimum maximum power point (MPP) measurement is difficult under fluctuating climatic conditions. For maximizing SPVS output power, MPP tracking (MPPT) controllers are used. In this paper, a new adaptive fuzzy logic controller (AFLC) based MPPT technique is proposed. In this proposed AFLC, the membership functions (MFs) are optimized using the Grey Wolf Optimization (GWO) technique to generate the optimal duty cycle for MPPT. Four shading patterns are used to experiment with the performance of the proposed AFLC. The proposed approach tracks the global MPP for all shading conditions and also enhances the tracking speed and tracking efficiency with reduced oscillations. The effectiveness and robustness of proposed AFLC based tracker results over P&O and FLC are validated using Matlab/Simulink environment. The proposed AFLC overcome the drawbacks of the classical P&O, and FLC approaches.  相似文献   

4.
The incident angle is a critical factor impacting the performance of fixed photovoltaic (PV) modules. Off‐normal incidence leads to significant changes in the current–voltage (I–V) characteristics and serious deterioration in the performance of fixed PV modules, resulting in difficulties in achieving optimal use of the available solar energy and retaining the maximum power output. To investigate this problem in depth, we develop a theoretical method based on the material properties and recombination mechanisms of the semiconductor, which can be used to directly evaluate the incident angle dependence of the energy harvesting performance and the maximum power point (MPP) estimation of PV modules composed of different materials from their I–V characteristic curves under irradiation. The proposed method is a simple approach with a low calculation burden. The performance of the proposed method is evaluated by examining the characteristics of the open‐circuit voltage, short‐circuit current, MPP, and the maximum output power of PV modules constructed of different semiconductor materials with respect to the various incident angles. The results are discussed in detail. The experimental results demonstrate that the proposed method could be used to optimize the performance of fixed PV modules and realize MPP control of PV systems during practical operation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
针对激光无线输能系统接收端激光光伏阵列由于激光强度不均匀和不稳定而导致其输出P-U特性曲线呈现多峰、波动性强、稳定性差的问题,首先结合砷化镓激光光伏电池的输出特性,建立激光光伏电池阵列模型,分析其多峰产生的原因。然后利用捕猎搜索算法动态调节粒子群算法中粒子的搜索空间,改进粒子的控制机制,提高了算法的收敛速度、跟踪精度和稳定性,且可有效避免算法陷入局部最优解。最后基于交错并联Boost电路,通过Matlab/Simulink仿真验证了该算法在激光无线输能系统输出最大功率跟踪方面应用的有效性和可行性。  相似文献   

6.
A photovoltaic (PV) array shows relatively low output power density, and has a greatly drooping current–voltage (IV) characteristic. Therefore, maximum power point tracking (MPPT) control is used to maximize the output power of the PV array. Many papers have been reported in relation to MPPT. However, the current–power (IP) curve sometimes shows multi-local maximum point mode under non-uniform insolation conditions. The operating point of the PV system tends to converge to a local maximum output point which is not the real maximal output point on the IP curve. Some papers have been also reported, trying to avoid this difficulty. However, most of those control systems become rather complicated. Then, the two stage MPPT control method is proposed in this paper to realize a relatively simple control system which can track the real maximum power point even under non-uniform insolation conditions. The feasibility of this control concept is confirmed for steady insolation as well as for rapidly changing insolation by simulation study using software PSIM and LabVIEW.  相似文献   

7.
为优化光伏阵列在部分遮蔽情况下的多峰值MPPT控制,保证光伏发电系统实时功率的最大输出,提出了基于改进BA算法的最大功率追踪控制方法,即在基本BA算法的基础上,融入了小生境技术的共享机制与排挤策略,减少相似个体数量,从而增加了BA算法在迭代过程中的种群多样性,提高了BA算法在MPPT控制中的全局搜索能力,增强了最大功率追踪的稳定性,并将该算法与PSO、PO算法在不同光照及温度条件下的MPPT控制效果进行了仿真试验对比。结果表明,与传统算法相比,改进的BA算法具有更好的追踪效果,不仅避免了光伏系统在遮蔽情况下输出功率陷入局部最大值的问题,且提高了发电效率。  相似文献   

8.
实际光伏系统在被部分遮挡的情况下,带有旁路二极管的串联光伏组件呈现出多峰值的输出特性。为得到全局最大功率点,需要对其进行多峰值最大功率点跟踪(MPPT)。在单峰值MPPT控制算法的基础上,提出新的多峰值MPPT控制方法,能够通过4步,实现对最大功率点的有效跟踪。该算法的关键在于确定输出特性的谷值,以便进行定界和多区域搜索。最后通过仿真实例验证该算法的有效性。  相似文献   

9.
Solar photovoltaics (PVs) have nonlinear voltage–current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC–DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.  相似文献   

10.
This paper proposes maximum photovoltaic power tracking (MPPT) for the photovoltaic (PV) array using the fractional-order incremental conductance method (FOICM). Since the PV array has low conversion efficiency, and the output power of PV array depends on the operation environments, such as various solar radiation, environment temperature, and weather conditions. Maximum charging power can be increased to a battery using a MPPT algorithm. The energy conversion of the absorbed solar light and cell temperature is directly transferred to the semiconductor, but electricity conduction has anomalous diffusion phenomena in inhomogeneous material. FOICM can provide a dynamic mathematical model to describe non-linear characteristics. The fractional-order incremental change as dynamic variable is used to adjust the PV array voltage toward the maximum power point. For a small-scale PV conversion system, the proposed method is validated by simulation with different operation environments. Compared with traditional methods, experimental results demonstrate the short tracking time and the practicality in MPPT of PV array.  相似文献   

11.
Yi-Hua Liu  Jia-Wei Huang 《Solar Energy》2011,85(11):2771-2780
Low power photovoltaic (PV) systems are commonly used in stand-alone applications. For these systems, a simple and cost-effective maximum power point tracking (MPPT) solution is essential. In this paper, a fast and low cost analog MPPT method for low power PV systems is proposed. By using two voltage approximation lines (VALs) to approximate the maximum power point (MPP) locus, a low-complexity analog MPPT circuit can be developed. Theoretical derivation and detailed design procedure will be provided in this paper. The proposed method boasts the advantages such as simple structure, low cost, fast tracking speed and high tracking efficiency. To validate the correctness of the proposed method, simulation and experimental results of an 87 W PV system will also be provided to demonstrate the effectiveness of the proposed technique.  相似文献   

12.
为了提高太阳电池阵列的工作效率和整个光伏发电系统的稳定性,在光伏发电系统中需要对光伏电池的最大功率点进行跟踪。为了消除常规模糊跟踪算法在最大功率点附近出现的振荡问题,在分析光伏电池伏安特性的基础上,提出了fuzzy-PI双模控制策略,分析了该控制算法的原理,并对控制系统做了设计。Matlab/Simulink仿真表明fuzzy-PI双模控制能够快速、准确地跟踪最大功率点,避免了最大功率点处的振荡,提高了系统稳定性和能量转换效率,从而使整个双模控制兼有了MPPT精确性与快速性。  相似文献   

13.
Due to the high interest in renewable energy and diversity of research regarding photovoltaic (PV) array, a great research effort is focusing nowadays on solar power generation and its performance improvement under various weather conditions. In this paper, an integrated framework was proposed, which achieved both maximum power point tracking (MPPT) and minimum ripple signals. The proposed control scheme was based on extremum-seeking (ES) combined with fractional order systems (FOS). This auto-tuning strategy was developed to maximize the PV panel output power through the regulation of the voltage input to the DC/DC converter in order to lead the PV system steady-state to a stable oscillation behavior around the maximum power point (MPP). It is shown that fractional order operators can improve the plant dynamics with respect to time response and disturbance rejection. The effectiveness of the proposed controller scheme is illustrated with simulations using measured solar radiation data.  相似文献   

14.
This paper explains the development of a new algorithm for maximum power point tracking (MPPT) in large PV systems under partial shading conditions (PSC). The new algorithm combines the use of particle swarm optimization (PSO) for MPPT during the initial stages of tracking and then employs the traditional perturb and observe (PO) method at the final stages. The methodology has been first simulated in two different PV configurations under varying shading patterns and experimentally verified using a microcontroller based experimental system. The integration of swarm intelligence with PO algorithm is shown to yield faster convergence to the global maximum power point (GMPP) than when the two methods are individually used. The oscillations in the output power, voltage and current of the PV system with the proposed method are the least when compared to the ones obtained during PSO based MPPT.  相似文献   

15.
To exploit photovoltaic systems, a major point that merits attention is to find maximum output power for the efficiency increase. The output power of solar cells depends on the ambient temperature and intensity of solar radiation. The cloud phenomenon creates a partially shaded on solar arrays; in this condition, the power–voltage curve of a solar array has several local maximum points. When there is uniform radiation, conventional methods of maximum power point tracking (MPPT) can be used. However, these methods are not efficient in partially shaded, due to the existence of several Maximum Power Points (MPPs) in the power-voltage characteristic. In this paper, a novel method for MPP tracking under the partially shaded is proposed, which is a combination of observational tracking and constant–voltage methods. When there is uniform radiation, the tracking operation is observed and tracked by a fuzzy logic–based approach. The proposed method is based on the existence of a relationship between radiation intensity and MPP voltage. In the existence of this relationship, the MPP voltage can be calculated by measuring the intensity of radiation at any moment. In addition, partially shaded works using the constant-voltage method. To verify the simulation results, laboratory implementation was performed. The results show that with considering the MPPs, the output power increases about 10% while the partially shaded is applied.  相似文献   

16.
Partial shading conditions have a major effect on the electrical characteristics of photovoltaic (PV) power generators. In this paper, the effects of partial shading on maximum power points (MPPs) of a PV power generator have been systematically studied by using Simulink simulation model of a PV power generator composed of 18 series-connected PV modules. It is shown that the local MPPs can be classified into MPPs at low and high voltages based on the MPP operating point of the PV generator. The results also show that based on the MPP current and voltage it is possible to directly know if the MPP at high voltages is a local or a global MPP. The differentiation between local and global MPPs at high voltages is based on the voltage difference between the actual MPP voltage at high voltages and the theoretical MPP voltage under corresponding uniform conditions. This differentiation method was also tested to work correctly by utilizing experimental measurements of the Tampere University of Technology Solar PV Power Station Research Plant. By using this method, it can be identified if the system is operating at a local or a global MPP. This method can further be utilized to develop global MPP tracking algorithms.  相似文献   

17.
光伏发电的最大功率跟踪算法研究   总被引:21,自引:1,他引:20  
太阳能光伏阵列的输出特性受外界环境因素的影响,为了跟踪太阳能光伏阵列输出功率最大点,实现光伏阵列和负载的匹配,常在系统中加入最大功率跟踪器。准确跟踪太阳能光伏阵列的最大输出功率点依赖于有效的搜索算法。分析了传统的扰动观察法和增量电导法的特点,并提出了一种新的变步长寻优算法。通过验证表明,这种算法能够快速准确地跟踪最大功率点。  相似文献   

18.
在局部阴影的情况下,由于串联式光伏组件的输出特性不同而产生多个极值点,使得传统的最大功率追踪(maximum power point tracking, MPPT)方法陷入局部极值点而失效。文中提出一种针对两级并网光伏系统的改进电导增量法以适应光伏阵列在局部阴影下的多峰值最大功率跟踪,通过分析最大功率点电压的变化范围,设定最大功率电压搜索范围以提高搜索效率,并通过DC/DC Boost变换器占空比实现输入电压控制,保证算法不陷入局部极值点。最后利用仿真实验验证了该算法在有、无阴影情况下均能准确地跟踪光伏方阵最大功率,有效提高了光伏阵列输出效率。  相似文献   

19.
太阳能光伏系统MPPT控制算法的对比研究   总被引:27,自引:0,他引:27  
根据光伏太阳电池板的内部结构和输出伏安特性建立光伏方阵的Matlab仿真模型,利用实测的气象光强数据对恒压跟踪法、爬山法、爬山改进法和INC法等4种光伏系统最大功率跟踪(MPPT)控制算法进行计算机仿真,评价每种算法在不同天气的光照变化条件下特别是光照强度迅速变化时的跟踪效果,得出各个算法的优缺点。仿真结果用于指导太阳能光伏系统最大功率跟踪器的设计及其控制算法的选择。  相似文献   

20.
Over the past few decades, the world demand for energy has risen steadily, forcing the world communities to look for alternative sources. Photovoltaic (PV) is seen as the most promising solution for this demand. However, the PV system is popularly known to suffer from low‐energy harvesting due to the change of environment conditions. An inexpensive and practical solution to extract the energy from the PV is by improving the maximum power point tracking (MPPT) controller technique. An ideal MPPT should be able to track the true maximum power operating point accurately under all circumstances and overcome all nonlinearities in the characteristic I‐V curves. This paper presents an updated review of the techniques based on the perturbative MPPT methods, both using the conventional and soft computing methods. The working principles of the techniques, parameter effects, and their limitations are discussed. The focus of this review is to direct the readers to the new direction of MPPT using the artificial intelligence and evolutionary computation techniques. Besides serving as a comprehensive source of information, the paper also provides a critical review on the relative performance of the selected MPPT methods. This includes the module dependency, tracking performance, and the ability to handle the partial shading conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号