首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural, elastic, thermodynamic and electronic properties of L12-ordered intermetallic compounds Ni3X (X = Al, Ga and Ge) under pressure range from 0 to 50 GPa with a step of 10 GPa have been investigated using first-principles method based on density functional theory (DFT). The calculated structural parameters of Ni3X at zero pressure and zero temperature are consistent with the experimental data. The results of bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio v, anisotropy index AU and Debye temperature ΘD increase with the increase of external pressure. In addition, the Debye temperature of these compounds gradually reduce as the order of Ni3Al > Ni3Ga > Ni3Ge. The ratio of shear modulus to bulk modulus G/B shows that the three binary compounds are ductile materials, and the ductility of Ni3Al and Ni3Ga can be improved with pressure going up, while Ni3Ge is opposite. Finally, the pressure-dependent behavior of density of states, Mulliken charge and bond length are analyzed to explore the physical origin of the pressure effect on the structural, elastic and thermodynamic properties of Ni3X.  相似文献   

2.
The structural, electronic, elastic, mechanical and thermal properties of the isostructural and isoelectronic nonmagnetic RESn3 (RE = Y, La and Ce) compounds, which crystallize in AuCu3-type structure, are studied using first principles density functional theory based on full potential linearized augmented plane wave (FP-LAPW) method. The calculations are carried out within PBE-GGA, WC-GGA and PBE-sol GGA for the exchange correlation potential. Our calculated ground state properties such as lattice constant (a0), bulk modulus (B) and its pressure derivative (B′) are in good agreement with the experimental and other available theoretical results. We first time predict the elastic constants for these compounds using different approximations of GGA. All these RESn3 compounds are found to be ductile in nature in accordance with Pugh's criteria. The computed electronic band structures and density of states show metallic character of these compounds. The elastic properties including Poisson's ratio (σ), Young's modulus (E), shear modulus (GH) and anisotropy factor (A) are also determined using the Voigt–Reuss–Hill (VRH) averaging scheme. The average sound velocities (vm), density (ρ) and Debye temperature (θD) of these RESn3 compounds are also estimated from the elastic constants. We first time report the variation of elastic constants, elastic moduli, Cauchy's pressure, sound velocities and Debye temperatures of these compounds as a function of pressure.  相似文献   

3.
A systematic investigation on structural, elastic and electronic properties of Rh–Zr intermetallic compounds is conducted using first-principles electronic structure total energy calculations. The equilibrium lattice parameters, enthalpies of formation (Efor), cohesive energies (Ecoh) and elastic constants are presented. Of the eleven considered candidate structures, Rh4Zr3 is most stable with the lowest Efor. The two orthogonal-type, relative to the CsCl-type, are the competing ground-state structures of RhZr. The result is in agreement with the experimental reports in the literature. The analysis of Efor and mechanical stability excludes the presence of Rh2Zr and RhZr4 at low temperature mentioned by .Curtarolo et al. [Calphad 29, 163 (2005)]. It is found that the bulk modulus B increases monotonously with Rh concentration, whereas all other quantities (shear modulus G, Young's modulus E, Poisson's ratio σ and ductility measured by B/G) show nonmonotonic variation. RhZr2 exhibits the smallest shear/Young's modulus, the largest Poisson's ratio and ductility. Our results also indicate that all the Rh–Zr compounds considered are ductile. Furthermore, the detailed electronic structure analysis is implemented to understand the essence of stability.  相似文献   

4.
The structural, elastic and thermodynamic properties of FeB, Fe2B, orthorhombic and tetrahedral Fe3B, FeB2 and FeB4 iron borides are investigated by first-principle calculations. The elastic constants and polycrystalline elastic moduli of Fe–B compounds are usually large especially for FeB2 and FeB4, whose maximum elastic constant exceeds 700 GPa. All of the six compounds are mechanically stable. The Vickers hardness of FeB2 is estimated to be 31.4 GPa. Fe2B and FeB2 are almost isotropic, while the other four compounds have certain degree of anisotropy. Thermodynamic properties of Fe–B compounds can be accurately predicted through quasi-harmonic approximation by taking the vibrational and electronic contributions into account. Orthorhombic Fe3B is more stable than tetrahedral one and the phase transition pressure is estimated to be 8.3 GPa.  相似文献   

5.
We report the structural, electronic, bonding, elastic and mechanical properties of nine scandium intermetallic compounds, ScTM (TM = Co, Rh, Ir, Ni, Pd, Pt, Zn, Cd and Hg), using ab initio density functional theory with the generalized gradient approximation for exchange and correlation potentials. The calculated structural parameters, such as the lattice constant (a0), bulk modulus (B) and its pressure derivative (B0) and elastic constants, are calculated using the CsCl-(B2 phase) structure. The electronic and bonding properties of the ScX compounds are quantitatively analyzed using band structures, DOS, Fermi surfaces and contour plots. The mechanical properties and ductile behaviors of these compounds are also predicted based on the calculated elastic constants.  相似文献   

6.
The structural, electronic and elastic properties of four RuX (X = Sc, Ti, V and Zr) intermetallic compounds have been investigated by using density functional theory within full potential linearized augmented plane wave method and using generalized gradient approximations in the scheme of Perdew, Burke and Ernzrhof (PBE), Wu and Cohen (WC) and Perdew et al. (PBEsol) for the exchange correlation potential. The relative phase stability in terms of volume-energy and enthalpy-pressure for these compounds is presented for the first time in three different (B1, B2 and B3) structures. The total energy is computed as a function of volume and fitted to Birch equation of states to find the ground state properties such as lattice constant (a0), bulk modulus (B) and its pressure derivative (B′). It is found that the lattice parameters in B2-phase agree well with the existing experimental and previous theoretical results. The second order elastic constants (SOECs) are also predicted for the above compounds. All the four compounds show ductile behavior. The ductility of these compounds has been analyzed using Pugh's rule. From the plots of electronic density of states (DOS), it can be concluded that these intermetallic compounds are metallic in nature.  相似文献   

7.
We have studied structural, elastic, and lattice dynamical properties of the LuB2, LuB4, and LuB12 compounds by using the plane-wave pseudopotential approach to the density-functional theory within the generalized gradient approximation. We have considered three different crystal structures of LuBx: LuB2 (P6/mmm), LuB4 (P4/mbm), and LuB12 (Fm-3m). The most stable structure is found to be tetragonal (P4/mbm) structure. The comparative results on the basic physical parameters such as lattice constants, bulk modulus, bond distances, elastic constants, shear modulus, Young's modulus, and Poison's ratio are reported. Also, we have predicted that LuB4 and LuB12 compounds are potential superhard materials. Furthermore, the phonon dispersion curves and corresponding phonon density of states (DOS) are computed for considered phases. Our structural and some other results are in agreement with the available experimental and other theoretical data.  相似文献   

8.
We employ density functional theory (DFT) to calculate pressure dependences of selected thermodynamic, structural and elastic properties as well as electronic structure characteristics of equiatomic B2 FeTi. We predict ground-state single-crystalline Young's modulus and its two-dimensional counterpart, the area modulus, together with homogenized polycrystalline elastic parameters. Regarding the electronic structure of FeTi, we analyze the band structure and electronic density of states. Employing (i) an analytical dynamical matrix parametrized in terms of elastic constants and lattice parameters in combination with (ii) the quasiharmonic approximation we then obtained free energies, the thermal expansion coefficient, heat capacities at constant pressure and volume, as well as isothermal bulk moduli at finite temperatures. Experimental measurements of thermal expansion coefficient complement our theoretical investigation and confirm our theoretical predictions. It is worth mentioning that, as often detected in other intermetallics, some materials properties of FeTi strongly differ from the average of the corresponding values found in elemental Fe and Ti. These findings can have important implications for future materials design of new intermetallic materials.  相似文献   

9.
Based on first-principles calculations, the effects of various Ni concentrations on the structural, elastic, electronic and thermodynamic properties of hexagonal η-Cu6Sn5 compound have been systematically investigated. The results demonstrate that higher Ni concentration in the η-Cu6−xNixSn5 (x = 0, 0.5, 1, 1.5 and 2) leads to thermodynamically stable compounds, and Ni atoms preferentially occupy Cu2 + Cu1c sites forming the η-Cu4Ni2Sn5 compound. It is also found that the unit cell volume and lattice parameter of the ‘a’ axis decrease with increasing Ni concentration, which are consistent with the other experimental results. Furthermore, the polycrystalline elastic properties are obtained from single-crystal elastic constants. Our results indicate that the addition of Ni enhances the mechanical stability, brittleness, modulus and Debye temperatures of η-Cu6Sn5 compound. Analyzing the electronic structure and charge density distribution provides the explanation that Ni develops distinct bonding energy to Cu and Sn in the structure.  相似文献   

10.
To improve the performance of a thermoelectric material CuGaTe2, element Ag is doped to replace element Ga and we investigate the electronic structure, phase stability, elastic and thermoelectric properties of CuGa1−xAgxTe2 (x = 0, 0.25 and 0.5) via first-principles method. The phase stability of CuGa1−xAgxTe2 is discussed by analyzing the formation energy, cohesive energy and elastic constants. The calculated sound velocities decrease with the increase of Ag content, which is favorable for reducing the lattice thermal conductivity. The analysis of band structures shows that the replacement of Ga by Ag makes CuGaTe2 undergo a direct-indirect semiconductor transition. The Ag doping induces steep density of states in valence band edge, which is beneficial for increasing the carrier concentration and improving thermoelectric performance of CuGaTe2.  相似文献   

11.
Effect of tetragonal distortion on the electronic structure, dynamical properties and superconductivity in Mo3Sb7 is analyzed using first principles electronic structure and phonon calculations. Rigid muffin tin approximation (RMTA) and McMillan formulas are used to calculate the electron–phonon coupling constant λ and superconducting critical temperature. Our results show, that tetragonal distortion has small, but beneficial effect on superconductivity, slightly increasing λ, and the conclusion that the electron–phonon mechanism is responsible for the superconductivity in Mo3Sb7 is supported. The spin-polarized calculations for the ordered (ferromagnetic or antiferromagnetic), as well as disordered (disordered local moment) magnetic states yielded non-magnetic ground state. We point out that due to its experimentally observed magnetic properties the tetragonal Mo3Sb7 might be treated as noncentrosymmetric superconductor, which could have influence for the pairing symmetry. In this context the relativistic band structure is calculated and spin–orbit interaction effects are discussed.  相似文献   

12.
The structural properties, formation enthalpies, and mechanical properties of Fe–Al compounds (FeAl, Fe2Al, Fe3Al, FeAl2, FeAl3 and Fe2Al5) are studied by using embedded-atom method (EAM) which is acquired by Mobius lattice inversion. The potential is transferrable and therefore does well for studying different Fe–Al compounds. The calculated lattice parameters and cohesive energies of Fe–Al compounds agree with the experimental and some EAM results. According to elastic constants restrictions, all the six Fe–Al compounds are mechanically stable. The calculated bulk moduli of the compounds increase with the increasing Fe concentration. Furthermore, results showed that FeAl, Fe3Al, FeAl3, FeAl2, Fe2Al5 have lower ratios of shear modulus to bulk modulus and Fe2Al has higher ratio.  相似文献   

13.
Three competing structures (C11b, C16 and E93) of intermetallic Zr2Cu have been systematically investigated by first-principles calculations and quasi-harmonic Debye model. Both the calculated equation of states (EOS) and pressure–enthalpy results indicate a structural phase transition from C11b to C16 phase at around 11–14 GPa. The calculated equilibrium crystal parameters and elastic constants are in consistence with available experimental or theoretical data. All three phases are mechanically stable according to the elastic stability criteria, and ductile according to Pugh's ratio, while the ambient-stable C11b phase shows a higher elastic anisotropy. Furthermore, differences in the nature of bonding between three competing structures are uncovered by electron density topological analysis. C11b Zr2Cu possesses an intriguing pseudo BaFe2As2-type structure with the charge density maxima at Zr tetrahedral interstices serving as Fe-position pseudoatoms; C16 Zr2Cu contains Zr-pair configurations bonded through bifurcated Zr–Zr bonding paths; while the E93 phase has only conventional straight bonding. Additionally, through quasi-harmonic Debye model, the pressure and temperature dependences of the bulk modulus, specific heat, Debye temperature, Grüneisen parameter and thermal expansion coefficient for three phases are obtained and discussed.  相似文献   

14.
The structural, half-metallic and elastic properties of the half-Heusler compounds NiMnM (M = Sb, As and Si) and IrMnAs were investigated using first-principles calculations within the generalized gradient approximation (GGA) based on density function theory (DFT). The most stable lattice configurations about site occupancy are (Ni)4a(Mn)4c(Sb)4d, (Ni)4a(Mn)4c(As)4d, (Ni)4a(Mn)4c(Si)4d and (Ir)4a(Mn)4c(As)4d, respectively, and the exchange of elements in Wyckoff position 4c and 4d results in an identical (symmetry-related) phase. The half-Heusler compounds show half-metallic ferromagnetism with a half-metallic gap of 0.168 eV, 0.298 eV, 0.302 eV and 0.109 eV, respectively, and the total magnetic moments (Mtot) are 4.00 μB, 4.00 μB, 3.00 μB and 3.00 μB per formula unit, respectively, which agree well with the Slater–Pauling rule based on the relationship of valence electrons. The compound (Ir)4a(Mn)4c(As)4d with half-metallic ferromagnetic character was reported for the first time. The individual elastic constants, shear modulus, Young's moduli, ratio B/G and Poisson's ratio were also calculated. The compounds are ductile based on the ratio B/G. The Debye temperatures derived from the average sound velocity (νm) are 327 K, 332 K, 434 K and 255 K, respectively. The predicted Debye temperature for NiMnSb agrees well with the available experimental value, and the Debye temperatures for the rest three compounds were reported for the first time.  相似文献   

15.
The structural and elastic properties of ternary B2 RuAl-based alloys are studied using first-principles calculations. Single-crystal elastic constants, atomic volumes, transfer energies, and electronic densities for RuAl-TM are computed, considering all possible transition-metal solute species TM. Calculated elastic constants are used to compute values of some commonly considered elasticity parameters, such as bulk modulus, shear modulus, Yong's modulus, Pugh ratio, and Cauchy pressure. The present results suggest that the bulk modulus of RuAl-TM increase approximately linearly with increasing electron density. Calculated elastic properties are in favorable accord with available experimental and theoretical data.  相似文献   

16.
The elastic, phonon and thermodynamic properties of Al12Mg17 have been investigated by first-principles calculations. The obtained structural parameters, phonon dispersion curves and the predicted thermodynamic properties for all the phases studied herein agree well with available experimental data. The temperature-dependent single-crystal elastic constants are also predicted along with the polycrystalline aggregate properties, including bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio. The brittleness of Al12Mg17 that we predict is consistent with experiments, in contrast to the previous calculation showing ductile behavior. Detailed analysis of density of states further explains the present theoretical findings.  相似文献   

17.
The study attempts to perform a systematical investigation of the thermodynamic, mechanical and electronic properties of orthorhombic Au2Al crystal by using first-principles calculations incorporated with a quasi-harmonic Debye model. In addition, their temperature, hydrostatic pressure and direction dependences are also addressed. The investigation begins with evaluation of the equilibrated lattice constants and elastic constants of Au2Al single crystal. Next, the mechanical features of the single crystal, such as ductile-brittle characteristic and elastic anisotropy, are assessed based on the Cauchy pressures, shear anisotropy factors and directional Young's modulus. Alternatively, the pressure-dependence of polycrystalline mechanical properties of Au2Al, including bulk, shear and Young's moduli, and ductility, brittleness and microhardness characteristics are also estimated. Furthermore, the study also characterizes the temperature-dependence of thermodynamic properties of Au2Al single crystal, namely, Debye temperature and heat capacity. At last, electronic characteristic analysis is carried out to predict the electronic band structures and density of states profiles of the crystal.The calculation results indicate that Au2Al crystal is an elastically anisotropic material at zero pressure and a highly ductile material with low stiffness. In addition, the Young's moduli of the crystal would be markedly enhanced with the increase of the hydrostatic pressure. It is also found that the heat capacity of Au2Al at low temperature strictly sticks to the Debye T3 law.  相似文献   

18.
The Debye temperature of a material is a suitable parameter to describe phenomena of solid-state physics which are associated with lattice vibrations. It basically depends on the elastic constants. In recent work a simple method was put forward that allows one to derive precise Debye temperatures of crystals with cubic, hexagonal and tetragonal symmetry from the elastic constants. The type of chemical binding does not play any role. It is one aim of the present work to apply this method to various intermetallic compounds, i.e. to critically analyse published Debye temperatures and to calculate hitherto unknown values. It is a further aim to show that the activation energy of self-diffusion is also connected with the elastic constants by a simple law at least for the cubic B2 and L12 intermetallics, as it was recently found for face-centred cubic metals. Some consequences for high-temperature plasticity are discussed.  相似文献   

19.
The site preferences of co-alloying elements (Mo–Ta, Mo–Re, Mo–Cr) in Ni3Al are studied using first-principles calculations, and the effects of these alloying elements on the elastic properties of Ni3Al are evaluated by elastic property calculations. The results show that the Mo–Ta, Mo–Re and Mo–Cr atom pairs all prefer Al–Al sites and the spatial neighbor relation of substitution sites almost has no influence on the site preference results. Furthermore, the Young's modulus of Ni3Al increases much higher by substituting Al–Al sites with co-alloying atoms, among which Mo–Re has the best strengthening effect. The enhanced chemical bondings between alloying atoms and their neighbor host atoms are considered to be the main strengthening mechanism of the alloying elements in Ni3Al.  相似文献   

20.
J. Feng  B. Xiao  R. Zhou  W. Pan 《Acta Materialia》2013,61(19):7364-7383
Starting from theoretical calculations based on LSDA, the authors compute the lattice parameters, cohesive energies and formation enthalpies of monazite-type REPO4 compounds. The calculated values are satisfactory compared with the experimental results from the elastic constants obtained, the mechanical moduli are evaluated using the strain–stress method. The predicted bulk, Young’s and shear moduli are in good agreement with the experiments. It is shown that the mechanical moduli are low (<200 GPa) and also increase from LaPO4 to GdPO4. The three-dimensional contours and their planar projections of Young’s modulus are plotted to illustrate the anisotropy in elasticity. It is found that Young’s moduli of all monazite-type REPO4 show strong dependence on direction. The linear thermal expansion coefficients are calculated using the empirical method, and the values are in the range 9 × 10?6–12 × 10?6 K?1. Using Clarke’s and Slack’s models, the thermal conductivities of REPO4 compounds obtained are close to the experimental profiles. The observed anomalies of experimental thermal properties of monazite-type GdPO4 are also explained based on the observed monazite to zircon-type transformation in experiment. Solving the Christoffel equation for monoclinic symmetry, the anisotropy in thermal conductivity is investigated. The results indicate that the total lattice thermal conductivities of monazite-type REPO4 show weak dependence on direction. Meanwhile, their sound velocities exhibit strong anisotropic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号