首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural, elastic, thermodynamic and electronic properties of L12-ordered intermetallic compounds Ni3X (X = Al, Ga and Ge) under pressure range from 0 to 50 GPa with a step of 10 GPa have been investigated using first-principles method based on density functional theory (DFT). The calculated structural parameters of Ni3X at zero pressure and zero temperature are consistent with the experimental data. The results of bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio v, anisotropy index AU and Debye temperature ΘD increase with the increase of external pressure. In addition, the Debye temperature of these compounds gradually reduce as the order of Ni3Al > Ni3Ga > Ni3Ge. The ratio of shear modulus to bulk modulus G/B shows that the three binary compounds are ductile materials, and the ductility of Ni3Al and Ni3Ga can be improved with pressure going up, while Ni3Ge is opposite. Finally, the pressure-dependent behavior of density of states, Mulliken charge and bond length are analyzed to explore the physical origin of the pressure effect on the structural, elastic and thermodynamic properties of Ni3X.  相似文献   

2.
We report the structural, electronic, bonding, elastic and mechanical properties of nine scandium intermetallic compounds, ScTM (TM = Co, Rh, Ir, Ni, Pd, Pt, Zn, Cd and Hg), using ab initio density functional theory with the generalized gradient approximation for exchange and correlation potentials. The calculated structural parameters, such as the lattice constant (a0), bulk modulus (B) and its pressure derivative (B0) and elastic constants, are calculated using the CsCl-(B2 phase) structure. The electronic and bonding properties of the ScX compounds are quantitatively analyzed using band structures, DOS, Fermi surfaces and contour plots. The mechanical properties and ductile behaviors of these compounds are also predicted based on the calculated elastic constants.  相似文献   

3.
The structural, half-metallic and elastic properties of the half-Heusler compounds NiMnM (M = Sb, As and Si) and IrMnAs were investigated using first-principles calculations within the generalized gradient approximation (GGA) based on density function theory (DFT). The most stable lattice configurations about site occupancy are (Ni)4a(Mn)4c(Sb)4d, (Ni)4a(Mn)4c(As)4d, (Ni)4a(Mn)4c(Si)4d and (Ir)4a(Mn)4c(As)4d, respectively, and the exchange of elements in Wyckoff position 4c and 4d results in an identical (symmetry-related) phase. The half-Heusler compounds show half-metallic ferromagnetism with a half-metallic gap of 0.168 eV, 0.298 eV, 0.302 eV and 0.109 eV, respectively, and the total magnetic moments (Mtot) are 4.00 μB, 4.00 μB, 3.00 μB and 3.00 μB per formula unit, respectively, which agree well with the Slater–Pauling rule based on the relationship of valence electrons. The compound (Ir)4a(Mn)4c(As)4d with half-metallic ferromagnetic character was reported for the first time. The individual elastic constants, shear modulus, Young's moduli, ratio B/G and Poisson's ratio were also calculated. The compounds are ductile based on the ratio B/G. The Debye temperatures derived from the average sound velocity (νm) are 327 K, 332 K, 434 K and 255 K, respectively. The predicted Debye temperature for NiMnSb agrees well with the available experimental value, and the Debye temperatures for the rest three compounds were reported for the first time.  相似文献   

4.
The structural, electronic and elastic properties of four RuX (X = Sc, Ti, V and Zr) intermetallic compounds have been investigated by using density functional theory within full potential linearized augmented plane wave method and using generalized gradient approximations in the scheme of Perdew, Burke and Ernzrhof (PBE), Wu and Cohen (WC) and Perdew et al. (PBEsol) for the exchange correlation potential. The relative phase stability in terms of volume-energy and enthalpy-pressure for these compounds is presented for the first time in three different (B1, B2 and B3) structures. The total energy is computed as a function of volume and fitted to Birch equation of states to find the ground state properties such as lattice constant (a0), bulk modulus (B) and its pressure derivative (B′). It is found that the lattice parameters in B2-phase agree well with the existing experimental and previous theoretical results. The second order elastic constants (SOECs) are also predicted for the above compounds. All the four compounds show ductile behavior. The ductility of these compounds has been analyzed using Pugh's rule. From the plots of electronic density of states (DOS), it can be concluded that these intermetallic compounds are metallic in nature.  相似文献   

5.
A systematic investigation on structural, elastic and electronic properties of Rh–Zr intermetallic compounds is conducted using first-principles electronic structure total energy calculations. The equilibrium lattice parameters, enthalpies of formation (Efor), cohesive energies (Ecoh) and elastic constants are presented. Of the eleven considered candidate structures, Rh4Zr3 is most stable with the lowest Efor. The two orthogonal-type, relative to the CsCl-type, are the competing ground-state structures of RhZr. The result is in agreement with the experimental reports in the literature. The analysis of Efor and mechanical stability excludes the presence of Rh2Zr and RhZr4 at low temperature mentioned by .Curtarolo et al. [Calphad 29, 163 (2005)]. It is found that the bulk modulus B increases monotonously with Rh concentration, whereas all other quantities (shear modulus G, Young's modulus E, Poisson's ratio σ and ductility measured by B/G) show nonmonotonic variation. RhZr2 exhibits the smallest shear/Young's modulus, the largest Poisson's ratio and ductility. Our results also indicate that all the Rh–Zr compounds considered are ductile. Furthermore, the detailed electronic structure analysis is implemented to understand the essence of stability.  相似文献   

6.
In this work, first principles calculation of structural, electronic magnetic and elastic properties of the half-metallic ferromagnetic Heusler compound Co2MnSi are presented. We have applied the full-potential linearized augmented plane waves plus local orbitals (FP-L/APW+lo) method based on the density functional theory (DFT). For the exchange and correlation potential generalized-gradient approximation (GGA) is used. The computed equilibrium lattice parameters agree well with the available theoretical and experimental data. Elastic constants and their pressure dependence are also calculated. The calculated total magnetization of 5 μB is in excellent agreement with recent experiments. We also presented the thermal effects using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. Temperature and pressure effects on the structural parameters, heat capacities, entropy, thermal expansion coefficient, and Debye temperatures are determined from the non-equilibrium Gibbs functions.  相似文献   

7.
Three competing structures (C11b, C16 and E93) of intermetallic Zr2Cu have been systematically investigated by first-principles calculations and quasi-harmonic Debye model. Both the calculated equation of states (EOS) and pressure–enthalpy results indicate a structural phase transition from C11b to C16 phase at around 11–14 GPa. The calculated equilibrium crystal parameters and elastic constants are in consistence with available experimental or theoretical data. All three phases are mechanically stable according to the elastic stability criteria, and ductile according to Pugh's ratio, while the ambient-stable C11b phase shows a higher elastic anisotropy. Furthermore, differences in the nature of bonding between three competing structures are uncovered by electron density topological analysis. C11b Zr2Cu possesses an intriguing pseudo BaFe2As2-type structure with the charge density maxima at Zr tetrahedral interstices serving as Fe-position pseudoatoms; C16 Zr2Cu contains Zr-pair configurations bonded through bifurcated Zr–Zr bonding paths; while the E93 phase has only conventional straight bonding. Additionally, through quasi-harmonic Debye model, the pressure and temperature dependences of the bulk modulus, specific heat, Debye temperature, Grüneisen parameter and thermal expansion coefficient for three phases are obtained and discussed.  相似文献   

8.
By means of first principles calculations, we have studied the structural, elastic, and phonon properties of the Al12X (X = Mo, Tc, Ru, W, Re, and Os) compounds in cubic structure. The elastic constants of these compounds are calculated, then bulk modulus, shear modulus, Young's modulus, Possion's ratio, Debye temperature, hardness, and anisotropy value of polycrystalline aggregates are derived and relevant mechanical properties are compared with the available theoretical ones. Furthermore, the phonon dispersion curves, mode Grüneisen parameters, and thermo-dynamical properties such as free energy, entropy and heat capacity are computed and the obtained results are discussed in detail.  相似文献   

9.
We have studied structural, elastic, and lattice dynamical properties of the LuB2, LuB4, and LuB12 compounds by using the plane-wave pseudopotential approach to the density-functional theory within the generalized gradient approximation. We have considered three different crystal structures of LuBx: LuB2 (P6/mmm), LuB4 (P4/mbm), and LuB12 (Fm-3m). The most stable structure is found to be tetragonal (P4/mbm) structure. The comparative results on the basic physical parameters such as lattice constants, bulk modulus, bond distances, elastic constants, shear modulus, Young's modulus, and Poison's ratio are reported. Also, we have predicted that LuB4 and LuB12 compounds are potential superhard materials. Furthermore, the phonon dispersion curves and corresponding phonon density of states (DOS) are computed for considered phases. Our structural and some other results are in agreement with the available experimental and other theoretical data.  相似文献   

10.
The study attempts to perform a systematical investigation of the thermodynamic, mechanical and electronic properties of orthorhombic Au2Al crystal by using first-principles calculations incorporated with a quasi-harmonic Debye model. In addition, their temperature, hydrostatic pressure and direction dependences are also addressed. The investigation begins with evaluation of the equilibrated lattice constants and elastic constants of Au2Al single crystal. Next, the mechanical features of the single crystal, such as ductile-brittle characteristic and elastic anisotropy, are assessed based on the Cauchy pressures, shear anisotropy factors and directional Young's modulus. Alternatively, the pressure-dependence of polycrystalline mechanical properties of Au2Al, including bulk, shear and Young's moduli, and ductility, brittleness and microhardness characteristics are also estimated. Furthermore, the study also characterizes the temperature-dependence of thermodynamic properties of Au2Al single crystal, namely, Debye temperature and heat capacity. At last, electronic characteristic analysis is carried out to predict the electronic band structures and density of states profiles of the crystal.The calculation results indicate that Au2Al crystal is an elastically anisotropic material at zero pressure and a highly ductile material with low stiffness. In addition, the Young's moduli of the crystal would be markedly enhanced with the increase of the hydrostatic pressure. It is also found that the heat capacity of Au2Al at low temperature strictly sticks to the Debye T3 law.  相似文献   

11.
We use an ab initio pseudopotential plane wave (PP-PW) method within the generalized gradient approximation (GGA) and the local density approximation (LDA) to study the structural, elastic and electronic properties of the unexplored antiperovskite ANTi3 compounds. The elastic constants C11, C12, C44 and their pressure dependence are calculated. We derived the bulk, shear and Young's moduli for ideal monocrystalline and for polycrystalline ANTi3 aggregates which we have classified as ductile in nature. Band structures reveal that these compounds are conductors. The covalent ionic bands nature is due to the strong hybridization between Ti 3d and N 2p states. The Ti 3d states play dominant roles near the Fermi levels for all these compounds. The energy difference between spin polarized calculations and the nonspin polarized calculations indicate that ANTi3 compounds exhibit magnetism at their equilibrium lattice constants.  相似文献   

12.
The first-principles calculations were applied to investigate the structural, elastic constants of Zr2Al alloy with increasing pressure. These properties are based on the plane wave pseudopotential density functional theory (DFT) method within the generalized gradient approximation (GGA) for exchange and correlation. The result of the heat of formation of Zr2Al crystal investigated is in excellent consistent with results from other study. The anisotropy, the shear modulus, and Young's modulus for the ideal polycrystalline Zr2Al are also studied. It is found that (higher) pressure can significantly improve the ductility of Zr2Al. Moreover, the elastic constants of Zr2Al increase monotonically and the anisotropies decrease with the increasing pressure. Finally, it is observed that Zr d electrons are mainly contributed to the density of states at the Fermi level.  相似文献   

13.
First-principles calculations of the crystal structure and the elastic properties of α-Ta4AlC3 have been carried out with the plane-wave pseudopotential density functional theory method. The calculated values are in very good agreement with experimental data as well as with some of the existing model calculations. The pressure dependence of the elastic constants cij, the aggregate elastic moduli (B, G, E), the Poisson's ratio, and the elastic anisotropy has been investigated. Using the quasi-harmonic Debye model considering the phonon effects, the temperature and pressure dependencies of isothermal bulk modulus, and the thermal expansions, and Grüneisen parameters, as well as Debye temperatures are investigated systematically in the ranges of 0–60 GPa and 0–1500 K as well as compared to available data.  相似文献   

14.
Full-potential linearized augmented plane wave (FLAPW) method has been employed within the generalized gradient approximation (GGA) to investigate structural and elastic properties of YAg, CeAg, HoCu, LaAg, LaZn, LaMg compounds. The calculated ground state properties such as lattice constants, bulk Modulus and elastic constants agree well with the experiment. The ductility or brittleness of these intermetallic compounds is predicted. The calculated results indicate that LaAg is the most ductile amongst the present compounds. For HoCu and LaZn compounds, the mechanical properties and Debye temperature are predicted from calculated elastic constants. In addition, chemical bonding of these compounds has been investigated in the light of topological analysis approach based on the theory of atoms in molecules.  相似文献   

15.
Using a density functional scheme, we have investigated for the first time the structural, electronic, elastic and thermal properties of the ideal cubic antiperovskite carbides ACRu3 (A = V, Nb, Ta). The computed equilibrium lattice constants are in excellent agreement with the experimental data. The electronic band structures and densities of states profiles show that the studied compounds are conductors. Analysis of atomic site projected local density of states reveals that the bonding character may be described as a mixture of covalent–ionic and, due to the d states in the vicinity of the Fermi level, metallic. Pressure dependence up to 50 GPa of the single crystal and polycrystalline elastic constants has been investigated in details. Analysis of the B/G ratios shows that VCRu3 is slightly brittle while NbCRu3 and TaCRu3 are slightly ductile. We have estimated the sound velocities in the principal directions. Through the quasi-harmonic Debye model, in which the phononic effects are taken into account, the temperature and pressure effects on the lattice constant, bulk modulus, heat capacity and Debye temperature are performed.  相似文献   

16.
The structural, elastic, electronic and thermal properties of the MAX phases Ti2SiC and Cr2SiC are studied by means of the pseudo-potential plane wave method within GGA and LDA. The effect of pressure on the normalized lattice constants a/a0 and c/c0 and the internal parameter z is investigated. Our results of elastic constants, sound velocities and Debye temperature are predictions. The Ti2SiC and Cr2SiC compounds behave as ductile material and show a stronger anisotropy. The analysis of the band structure and density of states show that these compounds are electrical conductors, having a strong directional bonding between Ti and C and Cr and C atoms assured by the hybridization of Tid and Crd atom states with Cp atom states. The thermal effect on the primitive cell volume, bulk modulus, heat capacities CV and CP were predicted using the quasi-harmonic Debye model.  相似文献   

17.
Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map.  相似文献   

18.
Structural, elastic and electronic properties of TbCu and TbZn have been studied using the full-potential augmented plane waves plus local orbital (APW + lo) within density functional theory (DFT). Results on elastic properties are obtained using both the local density approximation (LDA) and generalized gradient approximation (GGA) for exchange correlation potentials. The equilibrium lattice parameter, bulk modulus and its pressure derivative have been obtained using optimization method. Young’s modulus, shear modulus, Poisson ratio, sound velocities for longitudinal and shear waves, Debye average velocity, Debye temperature and Grüneisen parameters have been calculated. Taking elastic moduli (calculated from first-principle approach) as reference values at 0 K, temperature variation of elastic moduli has also been calculated using electrostatic and Born repulsive potentials and taking interactions up to next nearest neighbours. Calculated structural, elastic and other parameters are consistent with available data. From electronic calculations, it has been found that electronic conductivity in TbCu and TbZn is attributed to 3d-orbital electrons of Cu and Zn.  相似文献   

19.
The structural and elastic properties of ternary B2 RuAl-based alloys are studied using first-principles calculations. Single-crystal elastic constants, atomic volumes, transfer energies, and electronic densities for RuAl-TM are computed, considering all possible transition-metal solute species TM. Calculated elastic constants are used to compute values of some commonly considered elasticity parameters, such as bulk modulus, shear modulus, Yong's modulus, Pugh ratio, and Cauchy pressure. The present results suggest that the bulk modulus of RuAl-TM increase approximately linearly with increasing electron density. Calculated elastic properties are in favorable accord with available experimental and theoretical data.  相似文献   

20.
Elastic and thermodynamic properties of HfB2 with AlB2 structure under pressure are investigated by means of density functional theory method. The results at zero pressure are in good agreement with available theoretical and experimental values. The pressure dependence of elastic constants, bulk modulus and elastic anisotropy of HfB2 has been investigated. Through quasi-harmonic Debye model, the variations of the Debye temperature, heat capacity and thermal expansion with pressure and temperature are successfully obtained and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号