首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salmonella Typhimurium (ST) is one of the leading causes of foodborne diseases in fresh produce, such as lettuce. Despite this, the role of the possible interactions between lettuce indigenous microorganisms and ST on their ability to form biofilm on lettuce and subsequently on the sensitivity of their sessile cells to ultraviolet C (UV-C) irradiation, remains relatively unexplored. Here, the interaction of a mixed-culture of ST and cultivable indigenous microorganisms (CIMs) was examined, as well as the efficacy of UV-C. Initially, the CIMs were isolated and cultured with ST at 15 °C either planktonically or left to form biofilms on stainless steel (SS) and lettuce leaves. Microbial growth, biofilm formation, and survival following UV-C treatment were monitored using traditional plate count methods while biofilm formation, production of extracellular polymeric substance (EPS), and stomatal colonization were also observed by field emission scanning electron microscopy (FESEM). Internalization strength, color, and texture were analyzed by standard methods. Results revealed that the mixed-culture of ST and CIMs presented significantly (p < 0.05) decreased biofilm formation on lettuce leaves compared to mono-cultures (i.e. ST or CIMs alone), which indicated competitive interaction between them, while no interactions were observed for biofilms on SS and for the planktonic cultures. It was also demonstrated that a mixed-culture biofilm on lettuce presented significantly higher resistance (p < 0.05) to UV-C treatment compared to mono-culture biofilms, but such an effect was not observed for biofilms formed on SS and for the planktonic cultures. The Weibull model fitted well to microbial inactivation curves with R2 values that ranged from 0.90 to 0.97. Regarding the mixed-culture conditions, a UV-C fluency of 35 mJ/cm2 was required to achieve a 5.0 log CFU/mL or cm2 reduction in planktonic and biofilms on the SS for the mixed-culture, while 360 mJ/cm2 was required to reduce biofilm cell number by approximately 2.0 log CFU/cm2 on lettuce. Furthermore, FESEM analysis indicated higher EPS production, and greater stomatal colonization on lettuce mixed-cultures compared to mono-cultures. Finally, internalization strength was significantly higher (p < 0.05) for the mixed-culture on lettuce, thus supporting the notion that internalization in lettuce is a factor that contributes to microbial UV-C resistance. The absence of adverse effects of UV-C on the color and texture of the lettuce suggests it as an alternative means of eliminating ST.  相似文献   

2.
《Meat science》2010,84(4):599-603
To investigate the applicability of UV-C irradiation on the inactivation of foodborne pathogenic bacteria in ready-to-eat sliced ham, UV-C treatment was evaluated. Irradiation dose required for 90% reduction of the populations of Listeria monocytogenes, Salmonella enterica serovar Typhimurium, and Campylobacter jejuni were determined to be 2.48, 2.39, and 2.18 J/m2. Ready-to-eat sliced hams were inoculated with the pathogens and irradiated with UV-C light of 1000, 2000, 4000, 6000, and 8000 J/m2. Microbiological data indicated that foodborne pathogen populations significantly (p < 0.05) decreased with increasing UV-C irradiation. In particular, UV-C irradiation at 8000 J/m2 reduced the populations of L. monocytogenes, S. Typhimurium, and C. jejuni in the ham by 2.74, 2.02, and 1.72 log CFU/g. The results indicate that UV-C irradiation can be used as a microbial inactivation method for ready-to-eat sliced ham, and inactivation kinetics of the foodborne pathogens fit the Weibull model better than the first-order kinetics model.  相似文献   

3.
Ultraviolet (UV-C) irradiation is a non-thermal disinfection method, effective against a range of bacteria and viruses, which is being considered as an alternative to pasteurization of fruit juices. The objective of this study was to investigate the effect of UV-C irradiation on the polyphenolic content and in-vitro total antioxidant activity of apple juice. UV irradiation doses ranging from 0 to 240 mJ·cm 2 were delivered to apple juice and polyphenols, sugars, in-vitro total antioxidant activity and total phenols were profiled. The results demonstrated that UV-C irradiation in apple juices at relevant commercial disinfection doses induced significant reduction in the concentrations of chlorogenic acid, phloridzin, and epicatechin (p < 0.05). The induced changes were relatively minor for the above mentioned polyphenols, except phloridzin (50% reduction) at 240 mJ·cm 2. Epicatechin concentrations were reduced significantly (p < 0.05), whereas increase in catechin concentration was observed with increase in UV-C exposure to 240 mJ·cm 2. There was a minor reduction in sugar (glucose and fructose) concentrations with increasing exposure levels from 0 to 40 mJ·cm 2 (p > 0.05). In contrast, a slight increase in sugar concentrations as increase in UV-C exposure after 40 mJ·cm 2 was observed. These changes were not significantly different from control. Total phenolic content was well retained regardless of the UV-C exposure for apple juice. In-vitro total antioxidant activity changed when UV-C exposure exceeded 40 mJ·cm 2, but remained unchanged at the maximum UV-C dose of 240 mJ·cm 2. These results suggested that UV-C irradiation could be an effective alternative to conventional thermal processing for production of high quality apple juice.Industrial RelevanceThis research paper provides scientific evidence of the potential for UV-C irradiation to achieve meaningful levels of disinfection while retaining important bioactive compounds (polyphenols) in apple juice. In-vitro antioxidant activity and individual polyphenols were well retained at commercially relevant doses of 40 mJ·cm 2. From a nutritional perspective, UV-C irradiation is an attractive food preservation technology and offers opportunities for horticultural and food processing industries to meet the growing demand from consumers for healthier food products. Therefore, UV-C irradiated foods could be sold at a premium price to their thermally-processed counterparts, as they have retained their fresh-like properties. This study would provide technical information relevant for commercialization of UV-C treatment of juices.  相似文献   

4.
Coiled tube UV reactors were used to investigate the influence of tube diameter (1.6 mm ID, and 3.2 mm ID) and Reynolds number (Re) to inactivate Escherichia coli W1485 and Bacillus cereus spores in raw soymilk (RSM). Four levels of Re (343, 686, 1029 and 1372) were tested in RSM inoculated separately with each bacterium and treated in the UV reactors at a constant residence time of 11.3 s with UV-C dose of 11.187 mJ/cm2 at 253.7 nm. Inactivation efficiency of both microorganisms increased with Re. Maximum reductions of 5.6 log10 CFU/ml of E. coli and 3.29 log10 CFU/ml of B. cereus spores were achieved in the 1.6 mm ID UV reactor. Inactivation efficiency was higher in the 1.6 mm ID UV reactor than the 3.2 mm ID UV reactor for both the organisms. Effect of UV-C light on lipid oxidation of untreated RSM, measured as malondialdehyde and other reactive substances (MORS) content, was much higher (95 nmol/ml) than the UV-treated (58 nmol/ml) and thermally pasteurized (55 nmol/ml) RSM during the storage period of 7 days. The UV-C treatment can be effectively used for reducing E. coli cells and B. cereus spores in soymilk without compromising its quality.  相似文献   

5.
The inactivation of inoculated (S. cerevisiae) and spoilage microorganisms, i.e. yeasts and lactic acid bacteria (LAB), in clear and turbid grape juice was investigated using a pilot scale UV system. The biodosimetry method was used for UV dose prediction in a continuous flow UV reactor. Weibull model was applied for fitting the inactivation data. The flow rates (774, 820 ml/min) in this system were very close to the ones used in fruit juice processing. S. cerevisiae in clear juice was reduced by 3.39 ± 0.04 at 65.50 mJ/cm2 of UV dose. 1.54 ± 0.04 and 1.64 ± 0.03 log CFU/ml reductions were obtained for spoilage yeasts and LAB in turbid juice at UV dose of 78.56 and 67.97 mJ/cm2, respectively. The soluble solids (°Brix) and pH of grape juice samples were not affected by UV-C treatment (p > 0.05). Although the color parameters slightly were changed after irradiation, the color of PCGJ and FSTGJ did not show visual difference compared to the untreated samples.Industrial relevanceUV light has a potential to reduce the levels of microbial contamination in liquid foods. Although grape juice has many beneficial health effects, it has a fairly short shelf life. Therefore, pasteurization is required. But the thermal pasteurization has some undesired effects on the juice quality. Consumer demands for high quality fruit juice with fresh-like characteristics have markedly expanded in recent years. In the current study, the microbial inactivation efficiency of a pilot scale UV system for non-thermal treatment of clear and turbid grape juice was evaluated under conservative conditions. Most of the physicochemical properties of grape juice samples were not significantly affected from UV-C treatment (p > 0.05). This would be a major advantage in the processing of nutritious juice products.  相似文献   

6.
Salmonella typhimurium is able to form biofilms as a resistance mechanism against antimicrobials; therefore, it represents a problem for assuring food safety and highlights the importance of research on anti-biofilm technologies. In this study, S. typhimurium biofilms were inactivated with the combination of clove essential oil (CEO) and ultraviolet light (UV-C). The volatile composition of the CEO determined by gas chromatography showed eugenol as the major constituent (82%). A combination of CEO with UV-C achieved a complete bacterial reduction (6.8 log/cm2) on biofilms with doses of 1.2 mg/ml and 76.41 mJ/cm2, respectively. Individually, the CEO at 1.2 mg/ml caused a reduction of 1.8 log CFU/cm2 of attached bacteria cells on stainless steel, while UV-C individually used at 620.4 mJ/cm2 caused a 2.9 log CFU/cm2 reduction compared to control biofilms. In conclusion, this study demonstrated a synergistic effect of combining CEO and UV-C irradiation to inactivate biofilms of S. typhimurium.  相似文献   

7.
《Food microbiology》2004,21(5):611-616
Listeria monocytogenes and Escherichia coli O157:H7 are major foodborne pathogens implicated in various outbreaks involving pasteurized or unpasteurized milk, and various dairy products. The objective of this study was to determine the antibacterial effect of caprylic acid (CA, C8:0) and its monoglyceride, monocaprylin (MC) on L. monocytogenes and E. coli O157:H7 in whole milk. A five-strain mixture of E. coli O157:H7 or L. monocytogenes was inoculated in autoclaved milk (106 CFU/ml) containing 0, 25, or 50 mM of CA or MC. At 37°C, all the treatments, excepting 25 mm CA, reduced the population of both pathogens by approximately 5.0 log CFU/ml in 6 h. At 24 h of storage at 8°C, MC at both levels and CA at 50 mM decreased L. monocytogenes and E. coli O157:H7, respectively by >5.0 log CFU/ml. At 48 h of 4°C storage, populations of L. monocytogenes and E. coli O157:H7 were decreased to below detection level (enrichment negative) by 50 mm of MC and CA, respectively. Results indicate that MC could potentially be used to inhibit L. monocytogenes and E. coli O157:H7 in milk and dairy products, but sensory studies need to be conducted before recommending their use.  相似文献   

8.
《LWT》2005,38(1):21-28
This study evaluated dipping solutions of nisin with or without organic acids or salts, as inhibitors of Listeria monocytogenes introduced on sliced cooked pork bologna before vacuum packaging and storage at 4°C for 120 days. Inoculated (102–103 cfu/cm2) slices were immersed in nisin (5000 IU/ml), or in lactic or acetic acid (1, 3, 5 g/100 ml), sodium acetate or diacetate (3, 5 g/100 ml), and potassium benzoate or sorbate (3 g/100 ml), each combined with nisin. Additional slices were immersed in nisin, inoculated and then immersed in acid or salt solutions without nisin. Nisin reduced L. monocytogenes by 1.0–1.5 log cfu/cm2 at treatment (day-0) followed by a listeriostatic effect for 10 days. Thereafter, however, the pathogen multiplied in treatments without acid or salts, with growth being faster on slices immersed in nisin after as compared to before inoculation. Nisin in combination with 3 or 5 g/100 ml acetic acid or sodium diacetate or 3 g/100 ml potassium benzoate, applied individually or as mixtures, did not permit growth before day-90. Other treatments were of variable and lesser effectiveness (20–70 days), whereas in untreated or water-treated (control) bologna L. monocytogenes increased at 6–7 log cfu/cm2 at day-20. Based on the antilisterial efficacy and effects of treatments on product pH, nisin with 3 g/100 ml sodium diacetate may be the most promising combination in dipping solutions to control L. monocytogenes on sliced cured pork bologna.  相似文献   

9.
Recently the applications of the low starch contents of yam mucilage in nutraceutical and cosmeceutical industries are required. A novel continuous pilot-scale bubble separation system was used for recovering yam slurry mucilage. The objectives of these studies were to follow the previous design for continuously separating, recovering and irradiating yam slurry mucilage for inactivation of microorganisms. The UV-C dose of 32000 μW/sec/cm2 at 254 nm has a germicidal effect against microorganisms and is used for the disinfection. Two sets of custom made UV-C irradiators containing four UV-C germicidal lamps were added to the system. The effectiveness of this UV-C irradiator for reducing the aerobic bacteria count (APC) and yeasts and molds (YM) count in yam slurry mucilage was investigated. The results showed UV-C irradiation was successfully applied to reduce the microbial load in the yam slurry mucilage. If the slurry mucilage completes the process for both two sets of UV-C irradiators, a 4.5 log10 APC reduction and a 4.1 log10 YM reduction were achieved after 200 sec irradiation at a UV-C dosage of 32000 μW/sec/cm2, resulting in zero cfu/ml APC and YM. Escherichia coli and Salmonella are both negative. This novel continuous UV-C pilot-scale bubble separation technology could be an alternative technology not only separate and recover mucilage but also reduce the microorganisms to acceptable levels.Industrial relevanceThis novel continuous pilot-scale bubble separation system was used for recovering yam slurry mucilage. Recently the applications of the low starch contents of yam mucilage in nutraceutical and cosmeceutical industries are required.This novel continuous UV-C pilot-scale bubble separation technology could be an alternative technology not only to separate and recover mucilage but also reduce the microorganisms to acceptable levels. Actually the pilot scale of this system is going to build in our university. We also try to further use it for non-thermal fermentation. There are many potential industrial applications using this idea.  相似文献   

10.
《Meat science》2013,93(4):635-643
Listeria monocytogenes is a pathogen capable of adhering to many surfaces and forming biofilms, which may explain its persistence in food processing environments. This study aimed to genetically characterise L. monocytogenes isolates obtained from bovine carcasses and beef processing facilities and to evaluate their adhesion abilities. DNA from 29 L. monocytogenes isolates was subjected to enzymatic restriction digestion (AscI and ApaI), and two clusters were identified for serotypes 4b and 1/2a, with similarities of 48% and 68%, respectively. The adhesion ability of the isolates was tested considering: inoculum concentration, culture media, carbohydrate source, NaCl concentration, incubation temperature, and pH. Each isolate was tested at 108 CFU mL 1 and classified according to its adhesion ability as weak (8 isolates), moderate (17) or strong (4). The isolates showed higher adhesion capability in non-diluted culture media, media at pH 7.0, incubation at 25 °C and 37 °C, and media with NaCl at 5% and 7%. No relevant differences were observed for adhesion ability with respect to the carbohydrate source. The results indicated a wide diversity of PFGE profiles of persistent L. monocytogenes isolates, without relation to their adhesion characteristics. Also, it was observed that stressing conditions did not enhance the adhesion profile of the isolates.  相似文献   

11.
Electrostatic spraying which has an even and retained surface coverage could be an effective novel technique to completely cover the surface of fresh produce to disrupt biofilm formation by pathogenic bacteria. Spinach leaves and cantaloupe rind were spot-inoculated with a bacterial culture and stored at 8 °C for 72 h to allow biofilm formation. Among various green fluorescent protein-labeled strains, ED 14 strain of E. coli O157:H7 and SD 10 strain of Salmonella Typhimurium had the best attachment based on colony counts. The produce samples were electrostatically sprayed with malic (MA) and lactic (LA) acid solutions alone (1.0/2.0/3.0/4.0% w/v) or in combination (0.5 + 0.5/1.0 + 1.0/1.5 + 1.5/2.0 + 2.0% w/v) to test for a reduction in the attached bacteria. A combined treatment of LA 2.0% w/v + MA 2.0% w/v had the highest log reduction (CFU/disk) of 4.14 and 3.6 on the attached E. coli strain ED 14 (spinach) and Salmonella strain SD 10 (cantaloupe), respectively. Crystal violet assay demonstrated the disruptive effect of organic acids on biofilms formed by the pathogenic bacteria. Application of electrostatic spray with a combination of malic and lactic acids resulting in a log reduction (CFU/disk) of 3.6 or higher can improve the microbial safety of spinach and cantaloupe by preventing the pathogenic biofilm formation and bacterial growth.  相似文献   

12.
The effects of pulsed electric field (PEF) treatments at field intensities of 25–37 kV cm 1 and final PEF treatment temperatures of 15 °C and 60 °C on the inactivation of alkaline phosphatase (ALP), Total Plate Count (TPC), Pseudomonas and Enterobacteriaceae counts were determined in raw skim milk. At 15 °C, PEF treatments of 28 to 37 kV cm 1 resulted in 24–42% inactivation in ALP activity and < 1 log reduction in TPC and Pseudomonas count, while the Enterobacteriaceae count was reduced by at least 2.1 log units to below the detection limit of 1 CFU mL 1. PEF treatments of 25 to 35 kV cm 1 at 60 °C resulted in 29–67% inactivation in ALP activity and up to 2.4 log reduction in TPC, while the Pseudomonas and Enterobacteriaceae counts were reduced by at least 5.9 and 2.1 logs, respectively, to below the detection limit of 1 CFU mL 1. Kinetic studies suggested that the effect of field intensity on ALP inactivation at the final PEF treatment temperature of 60 °C was more than twice that at 15 °C. A combined effect was observed between the field intensity and temperature in the inactivation of both ALP enzyme and the natural microbial flora in raw skim milk.Industrial relevanceMilk has been pasteurised to ensure its safety and extend its shelf life. However, the need for retaining heat-sensitive nutrient and sensory properties of milk has resulted in interest in the application of alternative technologies. The results of the current study suggest that PEF as a non-thermal process can be employed for the treatment of raw milk in mild temperature to achieve adequate safety and shelf life while preserving the heat-sensitive enzymes, nutrients and bioactive compounds.  相似文献   

13.
Linguiça is a Portuguese traditional fermented sausage whose microbiological quality and safety can be highly variable. In order to elucidate risk factors and the particularities of the manufacturing technology that explain the between-batch variability in total viable counts (TVC), Enterobacteriaceae, Staphylococcus aureus and Listeria monocytogenes in the product; microbiological and physicochemical characterisation of linguiça at five stages of production (i.e., raw pork meat, mixed with ingredients, macerated, smoked and ripened) was carried out. A total of six production batches were surveyed from two factories; one utilised curing salts and polyphosphate in their formulation (Factory II). The delayed fermentation in the nitrite-formulated sausages was partly responsible for the increase (p < 0.01) in Enterobacteriaceae, S. aureus and L. monocytogenes from raw meat (3.21 log CFU/g, 1.30 log CFU/g and 22.2 CFU/g, respectively) to the end of maceration (4.14 log CFU/g, 2.10 log CFU/g and 140 CFU/g, respectively) while the better acidification process in the nitrite-free sausages (Factory I) led to lower counts of S. aureus (2.64 log CFU/g) and L. monocytogenes (10 CFU/g) in the finished products. In Factory II, although L. monocytogenes entered the chain at the point of mixing, it became steadily inactivated during smoking and ripening (< 50 CFU/g), despite the initially-delayed fermentation. Nitrite had a strong effect on reducing Enterobacteriaceae throughout smoking (r =  0.73) and ripening (r =  0.59), while it failed to control the growth of S. aureus. The main hurdle preventing the development of S. aureus in linguiça is the pH, and other factors contributing to its control are: longer ripening days (p = 0.019), low S. aureus in raw meat (p = 0.098), properly-washed casings (p = 0.094), and less contamination during mixing (p = 0.199). In the case of L. monocytogenes, at least three hurdles hinder its development in linguiça: low aw (p = 0.004), low pH (p = 0.040) and nitrite (p = 0.060), and other factors contributing to its control are: longer ripening (p = 0.072) and maceration (p = 0.106) periods, lower aw at the end of smoking (p = 0.076) and properly-washed casings (p = 0.099). Results have shown that there is a need to standardise the productive process of linguiça, to optimise the initial acidification process, and to reinforce proper programmes of quality control of ingredients and good hygiene practices, so as to minimise the introduction of Enterobacteriaceae and pathogens from external sources.  相似文献   

14.
Pulsed light (PL) and Thermosonication (TS) were applied alone or in combination using a continuous system to study their effect on Escherichia coli inactivation in apple juice. Selected quality attributes (pH, °Brix, colour (L, a, b, ΔE), non-enzymatic browning (NEBI) and antioxidant activity (TEAC)) were also evaluated pre- and post-processing. Two PL (360 μs, 3 Hz) treatments were selected and the juice exposed to energy dosages of 4.03 J/cm2 (‘low’ (L)) and 5.1 J/cm2 (‘high’ (H)) corresponding to 51.5 and 65.4 J/mL, respectively. The juice was also processed by TS (24 kHz, 100 μm) at 40 °C for 2.9 min (L) or 50 °C for 5 min (H), corresponding to 1456 and 2531 J/ml energy inputs, respectively. The effect of the resulting four energy levels and sequence (PL + TS and TS + PL) was studied. When the technologies were applied individually the maximum reduction achieved was 2.7 and 4.9 log CFU/mL (for TS (H) and PL (H) respectively), while most of the combined treatments achieved reductions in the vicinity of 6 log CFU/mL, showing an additive effect for both technologies when acting in combination, regardless of the sequence applied. All treatments significantly changed the colour of apple juice and the sequence in which the technologies were applied affected colour significantly (P < 0.05). The energy level applied did not affect any of the measured quality attributes.  相似文献   

15.
《Meat science》2014,98(4):568-574
The objective of this study was to investigate natural antimicrobials including cranberry powder, dried vinegar and lemon juice/vinegar concentrate, and post-lethality interventions (lauric arginate, octanoic acid, thermal treatment and high hydrostatic pressure) for the control of Listeria monocytogenes on alternatively-cured frankfurters. Lauric arginate, octanoic acid, and high hydrostatic pressure (400 MPa) reduced L. monocytogenes populations by 2.28, 2.03, and 1.88 log10 CFU per g compared to the control. L. monocytogenes grew in all post-lethality intervention treatments, except after a 600 MPa high hydrostatic pressure treatment for 4 min. Cranberry powder did not inhibit the growth of L. monocytogenes, while a dried vinegar and a vinegar/lemon juice concentrate did. This study demonstrated the bactericidal properties of high hydrostatic pressure, octanoic acid and lauric arginate, and the bacteriostatic potential of natural antimicrobial ingredients such as dried vinegar and vinegar/lemon juice concentrate against L. monocytogenes.  相似文献   

16.
An innovative low pressure plasma process for deposition of copper-containing hybrid organic-inorganic thin films was developed. The discharge was fed with an aerosol of an aqueous solution of a copper complex, i.e. bis(ethylenediamine)copper(II) hydroxide and argon. Polymeric films, incorporating inorganic Cu(I) and Cu(II) compounds, were obtained. Morphological and chemical characterizations of the coatings were carried out.Antimicrobial properties were assessed on two species of Pseudomonas spp. In vitro tests were carried out by contact of the optimized films, deposited on square polycarbonate samples (~ 4 cm2), with cell suspensions of 1 × 104 CFU/mL for 18 h at 25 °C. It was demonstrated that, the hybrid organic-inorganic thin coatings have potential utilization as active packaging material, showing an antimicrobial effect of up to three orders of magnitude (final microbial concentration 105 CFU/mL), compared to control polycarbonate (final microbial concentration 108 CFU/mL).Industrial relevanceAn innovative low pressure plasma process for deposition of copper-based, hybrid organic-inorganic thin films was developed. The optimized thin coatings have potential industrial utilization as active packaging material, being very effective against pseudomonads. Viability of Pseudomonas was reduced by three orders of magnitude (from 108 CFU/mL to 105 CFU/mL) in the presence of developed films, thus suggesting further investigation of the technique under food packaging conditions.  相似文献   

17.
18.
Pulsed Electric Field (PEF) treatment of milk provides the opportunity to increase the shelf-life of fresh milk for distribution to distant markets. PEF treatments were evaluated in sterile (UHT) milk to determine the inactivation of added spoilage Pseudomonas isolates and the subsequent gains in microbial shelf-life (time taken to reach 107 CFU mL 1). Little inactivation of Pseudomonas was achieved at 15 or 40 °C compared with 50 or 55 °C. The greatest inactivation (> 5 logs) was achieved by processing at 55 °C with 31 kV cm 1 (139.4 kJ L 1). Heat treatment at the application temperature without PEF treatment caused minimal inactivation of Pseudomonas (only 0.2 logs), demonstrating that the inactivation of the Pseudomonas was due to the PEF treatment rather than the heat applied to the milk. At added Pseudomonas levels of 103 and 105 CFU mL 1, the microbial shelf-life of PEF-treated milk was extended by at least 8 days at 4 °C compared with untreated milk. The total microbial shelf-life of the PEF-treated milk was 13 and 11 days for inoculation levels of 103 and 105 CFU mL 1 respectively. The results indicate that PEF treatment is useful for the reduction of pseudomonads, the major spoilage bacteria of milk.Industrial relevancePseudomonads are the major psychrotrophic spoilage microflora of refrigerated, stored HTST pasteurised milk. Long-life (UHT) products are an important component of milk sales in South-East Asia, but in recent years there has been an increasing demand for less processed milk products with extended shelf-life. The recent practice of shipping fresh bulk milk from Australia to South-East Asian countries has necessitated additional heat treatment prior to export and on arrival, to achieve the required shelf-life. Pulsed electric field treatment of HTST milk, applied alone or in combination with mild heat under optimised conditions, offers the opportunity of shelf-life extension, while limiting the reduction in quality attributes of milk associated with more severe additional heat treatments.  相似文献   

19.
Galotyri is a traditional Greek soft acid-curd cheese, which is made from ewes’ or goats’ milk and is consumed fresh. Because cheese processing may allow Listeria monocytogenes post-process contamination, this study evaluated survival of the pathogen in fresh cheese during storage. Portions (0.5 kg) of two commercial types (<2% salt) of Galotyri, one artisan (pH 4.0±0.1) and the other industrial (pH 3.8±0.1), were inoculated with ca. 3 or 7 log cfu g−1 of a five-strain cocktail of L. monocytogenes and stored aerobically at 4°C and 12°C. After 3 days, average declines of pathogen's populations (PALCAM agar) were 1.3–1.6 and 3.7–4.6 log cfu g−1 in cheese samples for the low and high inocula, respectively. These declines were independent (P>0.05) of the cheese type or the storage temperature. From day 3, however, declines shifted to small or minimal to result in 1.4–1.8 log cfu g−1 of survivors at 28 days of storage of all cheeses at 4°C, indicating a strong “tailing” independent of initial level of contamination. Low (1.2–1.7 log cfu g−1) survival of L. monocytogenes also occurred in cheeses at 12°C for 14 days, which were prone to surface yeast spoilage. When ca. 3 log cfu g−1 of L. monocytogenes were inoculated in laboratory scale prepared Galotyri of pH ≅4.4 and ≅3% salt, the pathogen died off at 14 and 21 days at 12°C and 4°C, respectively, in artisan type cheeses fermented with the natural starter. In contrast, the pathogen survived for 28 days in cheeses fermented with the industrial starter. These results indicate that L. monocytogenes cannot grow but may survive during retail storage of Galotyri despite its low pH of or slightly below 4.0. Although contamination of Galotyri with L. monocytogenes may be expected low (<100 cfu g−1) in practice, that long-term survival of the pathogen in commercial cheeses was shown to be unaffected by the artificial contamination level (3 or 7 logs) and the storage temperature (4°C or 12°C), which should be a concern.  相似文献   

20.
Modification of gut microflora has been reported as altering energy and lipid homeostasis, leading to changes in body composition. We evaluated whether consumption of Lactobacillus amylovorus (LA) and Lactobacillus fermentum (LF) as novel probiotics alters body adiposity through modification of gut microflora. Healthy, but overweight participants (n = 28) consumed yogurt containing 1.39 × 109 colony-forming unit (CFU) microencapsulated LA, 1.08 × 109 CFU microencapsulated LF, or a control yogurt using a randomized, double-blind crossover design. Body composition measurements showed that body fat mass was reduced in all treatments, with the greatest reduction from LA consumption. Bacterial distribution of gut microflora determined a significant reduction in the abundance of Clostridial cluster IV from LA consumption and significant increases in the abundance of Lactobacillus in both LF and LA treatments. The results suggest that modulation of gut microbial composition from probiotic consumption may contribute to altered energy metabolism and body composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号