首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider the problem of periodic optimal control of nonlinear systems subject to online changing and periodically time-varying economic performance measures using model predictive control (MPC). The proposed economic MPC scheme uses an online optimized artificial periodic orbit to ensure recursive feasibility and constraint satisfaction despite unpredictable changes in the economic performance index. We demonstrate that the direct extension of existing methods to periodic orbits does not necessarily yield the desirable closed-loop economic performance. Instead, we carefully revise the constraints on the artificial trajectory, which ensures that the closed-loop average performance is no worse than a locally optimal periodic orbit. In the special case that the prediction horizon is set to zero, the proposed scheme is a modified version of recent publications using periodicity constraints, with the important difference that the resulting closed loop has more degrees of freedom which are vital to ensure convergence to an optimal periodic orbit. In addition, we detail a tailored offline computation of suitable terminal ingredients, which are both theoretically and practically beneficial for closed-loop performance improvement. Finally, we demonstrate the practicality and performance improvements of the proposed approach on benchmark examples.  相似文献   

2.
王青松  何德峰  韩平 《控制与决策》2022,37(5):1137-1144
考虑约束非线性系统经济型最优控制问题,提出一种关于经济性能输入到状态稳定的经济型模型预测控制(EMPC)策略.通过离线计算系统的最优经济稳态点,构建关于该稳态点跟踪的稳定最优控制问题.在此基础上,利用稳定最优控制问题的最优值函数和关于经济性能函数的松弛量构造EMPC优化问题的收缩约束,再结合不变集原理和输入到状态稳定性...  相似文献   

3.
《Journal of Process Control》2014,24(8):1207-1224
In this paper we consider periodic optimal operation of constrained periodic linear systems. We propose an economic model predictive controller based on a single layer that unites dynamic real time optimization and control. The proposed controller guarantees closed-loop convergence to the optimal periodic trajectory that minimizes the average operation cost for a given economic criterion. A priori calculation of the optimal trajectory is not required and if the economic cost function is changed, recursive feasibility and convergence to the new periodic optimal trajectory is guaranteed. The results are demonstrated with two simulation examples, a four tank system, and a simplified model of a section of Barcelona's water distribution network.  相似文献   

4.
《Journal of Process Control》2014,24(8):1328-1336
In recent literature, a utopia-tracking strategy has been proposed for multi-objective model predictive control. This strategy tracks a vector of independently minimized objectives, evaluated at steady-state operation (the utopia point). The approach in the present work is based on the premise that cyclic process operation may in some cases outperform, on average, steady-state operation. We therefore concern ourselves with optimizing average performance for one cyclic period of operation. A dynamic utopia-tracking strategy is proposed, which generalizes steady-state utopia-tracking to systems which are optimally operated cyclically. The proposed control law minimizes the distance of its cost vector to a vector of independently minimized objectives, evaluating average cyclic performance (the dynamic utopia point). Recursive feasibility is established for a cyclic terminal state constraint formulation, however, conditions for stability are not given. The theoretical concepts are illustrated for a simple acetylene hydrogenation case, and a more complex oil production optimization case. The simulation study indicates novel operational insight for the oil production optimization case, by illustrating how simultaneous optimization of two objectives results in cyclic operation with improved performance.  相似文献   

5.
A novel two-layer economic model predictive control (EMPC) structure that addresses provable finite-time and infinite-time closed-loop economic performance of nonlinear systems in closed-loop with EMPC is presented. In the upper layer, a Lyapunov-based EMPC (LEMPC) scheme is formulated with performance constraints by taking advantage of an auxiliary Lyapunov-based model predictive control (LMPC) problem solution formulated with a quadratic cost function. The lower layer LEMPC uses a shorter prediction horizon and smaller sampling period than the upper layer LEMPC and involves explicit performance-based constraints computed by the upper layer LEMPC. Thus, the two-layer architecture allows for dividing dynamic optimization and control tasks into two layers for a computationally manageable control scheme at the feedback control (lower) layer. A chemical process example is used to demonstrate the performance and stability properties of the two-layer LEMPC structure.  相似文献   

6.
Nonlinear model predictive control (NMPC) is a strong candidate to handle the control challenges emerging in the modern wind energy industry. Recent research suggested that wind turbine (WT) control based on economic NMPC (ENMPC) can improve the closed-loop performance and simplify the task of controller design when compared to a classical NMPC approach. This paper establishes a formal relationship between the ENMPC controller and the classic NMPC approach, and compares empirically their closed-loop nominal behaviour and performance. The robustness of the performance is assessed for an inaccurate modelling of the tower fore-aft main frequency. Additionally, though a perfect wind preview is assumed here, the effect of having a limited horizon of preview of the wind speed via the LIght Detection And Ranging (LIDAR) sensor is investigated. Finally, this paper provides new algorithmic solutions for deploying ENMPC for WT control, and report improved computational times.  相似文献   

7.
In this paper, we present a computationally efficient economic NMPC formulation, where we propose to adaptively update the length of the prediction horizon in order to reduce the problem size. This is based on approximating an infinite horizon economic NMPC problem with a finite horizon optimal control problem with terminal region of attraction to the optimal equilibrium point. Using the nonlinear programming (NLP) sensitivity calculations, the minimum length of the prediction horizon required to reach this terminal region is determined. We show that the proposed adaptive horizon economic NMPC (AH-ENMPC) has comparable performance to standard economic NMPC (ENMPC). We also show that the proposed adaptive horizon economic NMPC framework is nominally stable. Two benchmark examples demonstrate that the proposed adaptive horizon economic NMPC provides similar performance as the standard economic NMPC with significantly less computation time.  相似文献   

8.
A new recurrent neural-network predictive feedback control structure for a class of uncertain nonlinear dynamic time-delay systems in canonical form is developed and analyzed. The dynamic system has constant input and feedback time delays due to a communications channel. The proposed control structure consists of a linearized subsystem local to the controlled plant and a remote predictive controller located at the master command station. In the local linearized subsystem, a recurrent neural network with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant. No linearity in the unknown parameters is required. No preliminary off-line weight learning is needed. The remote controller is a modified Smith predictor that provides prediction and maintains the desired tracking performance; an extra robustifying term is needed to guarantee stability. Rigorous stability proofs are given using Lyapunov analysis. The result is an adaptive neural net compensation scheme for unknown nonlinear systems with time delays. A simulation example is provided to demonstrate the effectiveness of the proposed control strategy.  相似文献   

9.
This work presents algorithms for improved fixed-time performance of Lyapunov-based economic model predictive control (LEMPC) of nonlinear systems. Unlike conventional Lyapunov-based model predictive control (LMPC) schemes which typically utilize a quadratic cost function and regulate a process at a steady-state, LEMPC designs very often dictate time-varying operation to optimize an economic (typically non-quadratic) cost function. The LEMPC algorithms proposed here utilize a shrinking prediction horizon with respect to fixed (but potentially large) operation period to ensure improved performance, measured by the desired economic cost, over conventional LMPC by solving auxiliary LMPC problems and incorporating appropriate constraints, based on the LMPC solution, in their formulations at various sampling times. The proposed LEMPC schemes also take advantage of a predefined Lyapunov-based explicit feedback law to characterize their stability region while maintaining the closed-loop system state in an invariant set subject to bounded process disturbances. The LEMPC algorithms are demonstrated through a nonlinear chemical process example.  相似文献   

10.
约束非线性系统构造性模型预测控制   总被引:3,自引:0,他引:3  
何德峰  薛美盛  季海波 《控制与决策》2008,23(11):1301-1304,1310
研究了连续时间约束非线性系统模型预测控制设计.利用控制Lyapunov函数离线构造单变量可调预测控制器,再根据性能指标在线优化可调参数,其中该参数近似于闭环系统的"衰减率".同时,控制Lyapunov函数保证了算法的可行性和闭环系统的稳定性.最后通过数值仿真验证了该算法的有效性.  相似文献   

11.
12.
This paper proposes an LMI approach to model predictive control of nonlinear systems with switching between multiple modes. In this approach, at each mode, the nonlinear system is divided to a linearized model in addition to a nonlinear term. A sum of squares (SOS) optimization problem is presented to find a quadratic bound for the nonlinear part. The stability condition of the switching system is obtained by using a discrete Lyapunov function and then the sufficient state feedback control law is achieved so that guarantees the stability of the system and also minimizes an infinite prediction horizon performance index. Moreover, two other LMI optimization problems are solved at each mode in order to find the maximum area region of convergence of the nonlinear system inscribed in the region of stability. The performance and effectiveness of the proposed MPC approach are illustrated by two case studies.  相似文献   

13.
To improve the overall control performance of nonlinear systems, an optimal control method, based on the framework of hybrid systems, is proposed. Firstly, the nonlinear systems are approximated by a number of piecewise affine models which are produced by the nonlinear systems at the specified operating points, then the piecewise affine models are synthesized under the framework of hybrid systems, and an associated optimal control problem, in which decision variables involve not only admissible continuous control but also the scheduling of subsystem modes, is established. Secondly, the optimal control problem is transformed into a MIQP problem by discretization over the whole state space and admissible control space to obtain the numerical optimal solution. For speeding up the algorithm, the simultaneous method on finite elements is used to lower the dimensions of the MIQP problem. Consequently, a hybrid model-based MPC for nonlinear systems is designed, and the adverse effects of model mismatch resulted from simultaneous method is weakened by MPC strategy. Simulations and comparisons with soft-switching method, hard-switching method and MLD method, confirm that a satisfactory performance can be obtained using the presented approach.  相似文献   

14.
本文研究了一类基于动态补偿的非线性系统的近似最优PD控制的问题.用微分方程的逐次逼近理论将非线性系统的最优控制问题转化为求解线性非齐次两点边值序列问题,并提供了从时域最优状态反馈到频域最优PD控制器参数的优化方法,从而获取系统最优的动态补偿网络,设计出最优PD整定参数,给出其实现算法.最后仿真示例将所提出的方法与传统的线性二次型调节器(LQR)逐次逼近方法相比较,表明该方法具有良好的动态性能和鲁棒性.  相似文献   

15.
We present a sensitivity-based nonlinear model predictive control (NMPC) algorithm and demonstrate it on a case study with an economic cost function. In contrast to existing sensitivity-based approaches that make strong assumptions on the underlying optimization problem (e.g. the linear independence constraint qualification implying unique multiplier), our method is designed to handle problems satisfying a weaker constraint qualification, namely the Mangasarian-Fromovitz constraint qualification (MFCQ). Our nonlinear programming (NLP) sensitivity update consists of three steps. The first step is a corrector step in which a system of linear equations is solved. Then a predictor step is computed by a quadratic program (QP). Finally, a linear program (LP) is solved to select the multipliers that give the correct sensitivity information. A path-following scheme containing these steps is embedded in the advanced-step NMPC (asNMPC) framework. We demonstrate our method on a large-scale case example consisting of a reactor and distillation process. We show that LICQ does not hold and the path-following method is able to accurately approximate the ideal solutions generated by an NLP solver.  相似文献   

16.
In this paper, a robust model predictive control (MPC) is designed for a class of constrained continuous-time nonlinear systems with bounded additive disturbances. The robust MPC consists of a nonlinear feedback control and a continuous-time model-based dual-mode MPC. The nonlinear feedback control guarantees the actual trajectory being contained in a tube centred at the nominal trajectory. The dual-mode MPC is designed to ensure asymptotic convergence of the nominal trajectory to zero. This paper extends current results on discrete-time model-based tube MPC and linear system model-based tube MPC to continuous-time nonlinear model-based tube MPC. The feasibility and robustness of the proposed robust MPC have been demonstrated by theoretical analysis and applications to a cart-damper springer system and a one-link robot manipulator.  相似文献   

17.
A constrained output feedback model predictive control approach for nonlinear systems is presented in this paper. The state variables are observed using an unscented Kalman filter, which offers some advantages over an extended Kalman filter. A nonlinear dynamic model of the system, considered in this investigation, is developed considering all possible effective elements. The model is then adaptively linearized along the prediction horizon using a state-dependent state space representation. In order to improve the performance of the control system as many linearized models as the number of prediction horizons are obtained at each sample time. The optimum results of the previous sample time are utilized for linearization at the current sample time. Subsequently, a linear quadratic objective function with constraints is formulated using the developed governing equations of the plant. The performance and effectiveness of the proposed control approach is validated both in simulation and through real-time experimentation using a constrained highly nonlinear aerodynamic test rig, a twin rotor MIMO system (TRMS).  相似文献   

18.
This paper addresses robust constrained model predictive control (MPC) for a class of nonlinear systems with structured time‐varying uncertainties. First, the Takagi‐Sugeno (T‐S) fuzzy model is employed to represent a nonlinear system. Then, we develop some techniques for designing fuzzy control which guarantees the system stabilization subject to input and output constraints. Both parallel and nonparallel distributed compensation control laws (PDC and non‐PDC) are considered. Sufficient conditions for the solvability of the controller design problem are given in the form of linear matrix inequalities. A simulation example is presented to illustrate the design procedures and performances of the proposed methods. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

19.
In Nonlinear Model Predictive Control (NMPC), the optimization problem may be nonconvex. It is important to find a global solution since a local solution may not be able to operate the process at desired setpoints. Also the solution must be available before the control input has to be applied to the process. In this paper, a stochastic algorithm called the Nested Partitions Algorithm (NPA) is used for global optimization. The NPA divides the search space into smaller regions and either concentrates search in one of these regions called the most promising region or backtracks to a larger region in the search space based on a performance index. To adapt the NPA to solve dynamic NMPC with continuous variables, a new partitioning scheme is developed that focuses on the first few control moves in the control horizon. The expected number of iterations taken by the NPA is presented. Convergence speed is improved by reducing the size of the starting most promising region based on a good starting point. The discrete sampling nature of the NPA may cause difficulty in finding the global solution in a continuous space. A gradient-based search is used with the NPA to overcome this difficulty. The solution quality is assessed in terms of the error from the actual global minimum. The algorithm is shown to give a feasible solution that provides asymptotic stability. Case studies are used to show the algorithm performance in terms of tracking setpoints, cost, solution quality and convergence time.  相似文献   

20.
针对一类具有预先指定切换序列的切换非线性系统,研究了具有通信信道干扰和时滞测量的分布式模型预测控制问题.在每个子系统都存在镇定控制器的假设下,利用基于Lyapunov函数的模型预测控制器设计了分布式模型预测控制器,并给出了闭环切换非线性系统最终有界的充分条件.最后,通过仿真结果表明了分布式模型预测控制策略的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号