首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The advantage of PV–thermal hybrid systems is their high total efficiency. By using concentrating hybrid systems, the cost per energy produced is reduced due to simultaneous heat and electricity production and a reduced PV cell area. In this article, the optical efficiency of a water-cooled PV–thermal hybrid system with low concentrating aluminium compound parabolic concentrators is discussed. The system was built in 1999 in Älvkarleby, Sweden (60.5° N, 17.4° E) with a geometric concentration ratio of C=4 and 0.5 kWp electric power. The yearly output is 250 kWh of electricity per square metre solar cell area and 800 kWh of heat at low temperatures per square metre solar cell area. By using numerical data from optical measurements of the components (glazing, reflectors, and PV cells) the optical efficiency, ηopt, of the PV–CPC system has been determined to be 0.71, which is in agreement with the optical efficiency as determined from thermal and electrical measurements. Calculations show that optimised antireflection-treated glazing and reflectors could further increase the electric power yield.  相似文献   

2.
A comparison of the economic viability of photovoltaic and diesel water pumping systems is presented for system sizes in the range 2.8 kWp to 15 kWp. Actual performance data from installed systems are employed for the base case. Sensitivity analysis is carried out to generalize results for other locations and conditions. The effect of system oversizing due to mismatch of water supply and demand patterns on the economic viability of PV water pumping system is illustrated based on real data and three-year operational experience of eight installations. Investment prospects in PV water pumping applications for different selling price scenarios of water have been investigated.  相似文献   

3.
This paper summarises the first eight months of monitoring of the PHA BONG photovoltaic generation project, a 500 kWp photovoltaic pilot plant, in Mae Hong Son province, Thailand. The local grid in this remote area in the North West of Thailand is very limited in its capacity and cannot be enlarged. It has been in operation since 20 March 2004 by feeding into 400 VAC, 22 kV medium voltage grid. The system consist of a photovoltaic array 1680 modules (140 strings, 12 modules/string; 300 W/module), power conditioning units and battery converter system. During the first eight months of this system's operation, the PV system generated about 383,274 kWh. The average of generating electricity production per day was 1695.9 kWh. It ranged from 1452.3 to 2042.3 kWh. The efficiency of the PV array system ranged from 9 to 12%. The efficiency of the power conditioning units (PCU) is in the range from 92 to 98%. The final yield (YF) ranged from 2.91 to 3.98 h/d and the performance ratio (PR) range from 0.7 to 0.9.  相似文献   

4.
The public support in photovoltaic (PV) technologies and increasing markets have resulted in extensive applications of grid-connected PV, in particular in the consumer side and electricity distribution grid. In this paper, the effects of a high level of grid connected PV in the middle voltage distribution network have been analyzed. The emphasis is put on static phenomena, including voltage drop, network losses and grid benefits. A multi-purpose modeling tool is used for PV analysis in Lisbon and Helsinki climates. All network types studied can handle PV without problems with an amount of PV equaling at least up to the load (1 kWp/household). The comb-type network showed the best performance. The PV is unable to shave the domestic load peak in the early evening hours but through orientating the PV panels both to east and west, the noon peak from PV can be reduced by 30%. PV integration reduces network losses positively up to a 1 kWp/hh (100% of annual domestic load) level. For 2 kWp/hh all but the comb-type networks demonstrate clear over-voltage situations and the annual network losses are much higher than without PV.  相似文献   

5.
This paper assesses energetically and economically the power-to-hydrogen concept by exploring the excess power resulting from the mismatch between the photovoltaic (PV) generation and the electric demand of a medium-size commercial structure located in Morocco. The variability in the building electric load is considered and the power flows from the PV field to the building are predicted using Artificial Neural Networks for a time-resolution of 15 min. A MATLAB code was implemented to estimate the instantaneous hydrogen production based on a semi-empirical mathematical formulation of an Alkaline type electrolyzer with a nominal capacity of 15 kW. These combined approaches are for the first time adopted to evaluate the feasibility of integrated PV hydrogen systems under the Moroccan context. Using a set of 5 electrolyzers coupled to the 104 kWp currently installed solar PV field, it was possible to generate about 18,622 Nm3/year of hydrogen by exploring the PV excess power. The overall efficiency of the integrated system ranged from 9.5% (in March) to 10.1% (in May). Such an approach allowed enhancing the effective efficiency and capacity factor to values of 9.873% and 26.87%, respectively compared to 6.325% and 10.163% for the base case scenario without hydrogen systems. From an economic perspective, it was found that the integrated PV-hydrogen plant engendered levelized cost of electricity and hydrogen of 12.56 c$/kWh and 21.55 $/kg, respectively.  相似文献   

6.
D. Picault  B. Raison 《Solar Energy》2010,84(7):1301-1309
The development of photovoltaic (PV) energy throughout the world this last decade has brought to light the presence of module mismatch losses in most PV applications. Such power losses, mainly occasioned by partial shading of arrays and differences in PV modules, can be reduced by changing module interconnections of a solar array. This paper presents a novel method to forecast existing PV array production in diverse environmental conditions. In this approach, field measurement data is used to identify module parameters once and for all. The proposed method simulates PV arrays with adaptable module interconnection schemes in order to reduce mismatch losses. The model has been validated by experimental results taken on a 2.2 kWp plant, with three different interconnection schemes, which show reliable power production forecast precision in both partially shaded and normal operating conditions. Field measurements show interest in using alternative plant configurations in PV systems for decreasing module mismatch losses.  相似文献   

7.
The main objective of this paper is to review the state of the art of residential PV systems in Belgium by the analysis of the operational data of 993 installations. For that, three main questions are posed: how much energy do they produce? What level of performance is associated to their production? Which are the key parameters that most influence their quality? This work brings answers to these questions. A middling commercial PV system, optimally oriented, produces a mean annual energy of 892 kWh/kWp. As a whole, the orientation of PV generators causes energy productions to be some 6% inferior to optimally oriented PV systems. The mean performance ratio is 78% and the mean performance index is 85%. That is to say, the energy produced by a typical PV system in Belgium is 15% inferior to the energy produced by a very high quality PV system. Finally, on average, the real power of the PV modules falls 5% below its corresponding nominal power announced on the manufacturer's datasheet. Differences between real and nominal power of up to 16% have been detected.  相似文献   

8.
The evaluation and assessment of the performance of photovoltaic (PV) cells requires the measurement of the current as a function of voltage, temperature, intensity, wind speed and radiation spectrum. Most noticeable of these parameters is the PV conversion efficiency η (defined as the maximum electrical power Pmax produced by the PV cell divided by the incident photon power Pin) which is measured with respect to standard test conditions (STC). These conditions refer to the solar spectrum , solar radiation intensity , cell temperature and wind speed (2 mph). Tests under STC are carried out in laboratory-controlled environment.With an increase of ambient temperature, there is a deficiency in the electrical energy that the solar cell can supply. This situation is especially important in hot climates. Outdoor exposure tests of solar cells have been conducted in the Department of Physics, University of Brunei Darussalam. Preliminary results demonstrate that the efficiency of the single crystal silicon solar cell strongly depends on its operating temperature. It has been noted that at the operating temperature of 64 °C, there was a decrease of 69% in the efficiency of the solar cell compared with that measured at STC. Investigation of the effect of variation in intensities of sunlight on the solar cell performance showed that the efficiency of the cell is reduced as intensities of sunlight are reduced but at a rate different from the reduction in intensities.  相似文献   

9.
An autonomous power system that exploits solar energy for the production of hydrogen through water electrolysis is fully assessed in terms of system implementation and optimal operating strategy. A 10 kWp photovoltaic array supplies energy to a PEM electrolyzer rated at 6.9 kWp. In order to maintain a smooth operation regardless of the inherent weather fluctuations, a 1000 Ah/24 V lead–acid accumulator stores energy excess and provides it when needed. The monitoring and control of the system is implemented through a Supervisory Control and Data Acquisition system (SCADA), while the interactions between electrical and chemical subsystems are addressed by a complete automation infrastructure. The mathematical models of each subsystem are validated based on real operational data and a model-based power management strategy is proposed and assessed through a parameter sensitivity analysis. Further on, an off-line optimization framework is evaluated regarding the optimal operation of the system in two diverse, but representative time periods. The optimal parameters are identified and their effect on hydrogen production and accumulator utilization is reported.  相似文献   

10.
The effect of the maximum swing angle of the sun (0°, 15°, 30°, 45° and 60°) away from the normal is observed on the maximum power output of an amorphous silicon solar PV module using a solar simulator. Studies reveal that as the panel inclination is increased, the maximum power produced (Pmp) by the module decreases. Solar equations are used to compute the maximum swing angle of the sun away from the normal position of the panel at noon (λ) during March, June, September and December months and are computed for various selected locations such as Mumbai, Ludhiana, Fargo, London and Moscow. An analogy between the simulated study and λ (for real operation conditions) for polar-mounted inclinations of PV panels is established and the effect of λ on the percent reduction of maximum power produced (Pmp) by the PV solar panel is studied.  相似文献   

11.
A novel embodiment of a polymer electrolyte membrane (PEM) electrolyser is presented as a means for producing hydrogen off-grid by the efficient absorption of the time-varying power output of a solar photovoltaic (PV) panel or array. The balance-of-plant power load was minimised using passive design principles to ensure efficient operation under cloudy, sunset and wintry conditions. Heat generated during the electrolysis process is stored when appropriate to significantly enhance the efficiency of hydrogen production after a period of darkness. A prototype field trial demonstrated the electrolyser's ability to track closely the highly variable output of the PV year-round under a wide range of operating conditions. Hydrogen yields for various geographical locations were estimated to vary from 25 to 65 kg p.a. for a 1.6 kW electrolyser with fixed-tilt PV panels depending on local levels of solar insolation. This could be increased to over 100 kg p.a. by employing a PV panel of greater capacity and a battery for absorbing the peak generation and then discharging it overnight to the electrolyser.  相似文献   

12.
In the present work a comparative study for thermal and electrical performance of different hybrid photovoltaic/thermal collectors designs for Iraq climate conditions have been carried out. Four different types of air based hybrid PV/T collectors have been manufactured and tested. Three collectors consist of four main parts namely, channel duct, glass cover, axial fan to circulate air and two PV panels in parallel connection. The measured parameters are, the temperature of the upper and the lower surfaces of the PV panels, air temperature along the collector, air flow rate, pressure drop, power produced by solar cell, and climate conditions such as wind speed, solar radiation and ambient temperature. The thermal and hydraulic performances of PV/T collector model IV have been analyzed theoretically based on energy balance. A Matlab computer program has been developed to solve the proposed mathematical model.The obtained results show that the combined efficiency of collector model III (double duct, single pass) is higher than that of model II (single duct double pass) and model IV (single duct single pass). Model IV has the better electrical efficiency. The pressure drop of model III is lower than that of models II and IV. The root mean square of percentage deviations for PV outlet temperature, and thermal efficiency of model IV are found to be 3.22%, and 18.04% respectively. The calculated linear coefficients of correlation (r) are 0.977, 0.965 respectively.  相似文献   

13.
The main problem in using photovoltaic (PV) systems is the low energy conversion efficiency of PV cells. The efficiency of PV cells will decrease significantly as the temperature of the cells exceed to a certain limit. In order to increase the efficiency, it is necessary to reduce the operating temperature of array. One of the ways for improving the system operation is cooling PV cells with a thin film of water. The aim of this research is to study the effects of nominal power of array and system head on the operation of system by using this method. For this purpose, a photovoltaic water pumping system is installed in Kerman city (Latitude: 30 ° 17′ and longitude: 57 ° 50′) and different methods examined to reduce PV cells temperature. The most effective way was chosen and used in set. This method is based on providing water for cooling cells by the pump itself. Experiments show that with decreasing of array nominal power and increasing in system head, the power generated by the array increases significantly. This increases the panel and total efficiency and therefore the pump flow rate. This method is ineffective as the array nominal power increases significantly.  相似文献   

14.
The main objective of this paper is to review the state of the art of residential PV systems in France. This is done analyzing the operational data of 6868 installations. Three main questions are posed. How much energy do they produce? What level of performance is associated to their production? Which are the key parameters that most influence their quality? During the year 2010, the PV systems in France have produced a mean annual energy of 1163 kWh/kWp. As a whole, the orientation of PV generators causes energy productions to be some 7% inferior to optimally oriented PV systems. The mean Performance Ratio is 76% and the mean Performance Index is 85%. That is to say, the energy produced by a typical PV system in France is 15% inferior to the energy produced by a very high quality PV system. On average, the real power of the PV modules falls 4.9% below its corresponding nominal power announced on the manufacturer's datasheet. A brief analysis by PV modules technology has led to relevant observations about two technologies in particular. On the one hand, the PV systems equipped with heterojunction with intrinsic thin layer (HIT) modules show performances higher than average. On the other hand, the systems equipped with the copper indium (di)selenide (CIS) modules show a real power that is 16% lower than their nominal value.  相似文献   

15.
This paper focuses on the combination of wind turbine (WT), photovoltaic (PV), fuel cell (FC) and ultra-capacitor (UC) systems for grid-independent applications. The dynamic behavior of the proposed hybrid system is tested under various wind speed, solar radiation and load demand conditions. The developed model and its control strategy exhibit excellent performance for the simulation of a complete day. In the simulation, the solar radiation and power demand data are based on real world measurements, while the wind speed data are quasi-real because it is simulated based on special wind speed generation algorithms.  相似文献   

16.
For a direct dry cooling system, the turbine back pressure fluctuates with the meteorological conditions. Moreover, the operation of axial flow fans plays an important role in the cooling performance of air-cooled condensers (ACC). It is of significant use to study the operation strategies of axial flow fans under various ambient conditions. Based on typical 2 × 660 MW direct dry cooling power generating units, the ACC model coupled with the turbine thermodynamic characteristics is developed, by which the thermo-flow performances of the ACC are predicted in the dominant wind direction, and then the standard coal consumption is calculated. The results show that the increased ambient temperature and wind speed, or the reduced fan rotational speed leads to the high turbine back pressure. At the low ambient temperature and wind speed, the standard coal consumption rate of the unit can be reduced by reducing the speed of axial flow fans appropriately, with the maximum drop in coal consumption rate reached 0.734 g/(kWh) when the ambient temperature is 10°C without wind. If the wind speed exceeds 12 m/s or the ambient temperature reaches 25°C, 110% of the rated fan rotational speed is recommended.  相似文献   

17.
Solar hybrid systems with thermoelectric generators   总被引:1,自引:0,他引:1  
The possibility of using of thermoelectric generators in solar hybrid systems has been investigated. Four systems were examined, one working without radiation concentration, of the traditional PV/Thermal geometry, but with TEGs between the solar cells and heat extractor, and three other using concentrators, namely: concentrator – TEG ? heat extractor, concentrator ? PV cell ? TEG ? heat extractor, and PV cell – concentrator – TEG – heat extractor. The TEGs based on traditional semiconductor material Bi2Te3 and designed for temperature interval of 50–200 °C were studied experimentally. It was found that the TEG’s efficiency has almost linear dependence on the temperature difference ΔT between its plates, reaching 4% at ΔT = 155 °C (hot plate at 200 °C) with 3 W of power generated over the matched load. The temperature dependencies of current and voltage are also linear; accordingly, the power generated has quadratic temperature dependence. The experimental parameters, as well as parameters of two advanced TEGs taken from the literature, were used for estimation of performance of the hybrid systems. The conclusions are drawn in relation to the efficiency at different modes of operation and the cost of hybrid systems, as well as some recommendations in relation to optimal solar cells for applications in these systems.  相似文献   

18.
Rustu Eke  Ali Senturk 《Solar Energy》2012,86(9):2665-2672
In the present study, performance results of two double axis sun tracking photovoltaic (PV) systems are analyzed after one year of operation. Two identical 7.9 kWp PV systems with the same modules and inverters were installed at Mugla University campus in October 2009. Measured data of the PV systems are compared with the simulated data. The performance measurements of the PV systems were carried out first when the PV systems were in a fixed position and then the PV systems were controlled while tracking the sun in two axis (on azimuth and solar altitude angles) and the necessary measurements were performed. Annual PV electricity yield is calculated as 11.53 MW h with 1459 kW h/kWp energy rating for 28 fixed tilt angle for each system. It is calculated that 30.79% more PV electricity is obtained in the double axis sun-tracking system when compared to the latitude tilt fixed system. The annual PV electricity fed to grid is 15.07 MW h with 1908 kW h/kWp for the double axis sun-tracking PV system between April-2010 and March-2011. The difference between the simulated and measured energy values are less than 5%. The results also allow the comparison of different solutions and the calculation of the electricity output.  相似文献   

19.
This paper describes the design and testing of a 10 kWp photovoltaic (PV) system and summarizes its performance results after the first 6 months of operation. This system functions as a stand-alone power system that is used to supply electricity for isolated buildings and is designed for integration with a micro-grid system (MGS), which is the future concept for a renewable energy-based power network system for Thailand. The system is comprised of the following components. An array with three different types of PV modules consisting amorphous thin film of 3672 W, polycrystalline solar cell of 3600 W and hybrid solar cell of 2880 W, making up a total peak power of 10.152 kW. In addition, there are three grid-connected inverters of 3.5 kW each, three bi-directional inverters of 3.5 kW each and an energy storage system of 100 kWh. After the first 6 months of system operation, it was found that all the components and the overall system had worked effectively. In total, the system had generated about 7852 kWh and the average electricity production per day was 43.6 kWh. The average efficiency of amorphous thin film panel, polycrystalline panel, hybrid solar cell panel and entire PV panel system was 6.26%, 10.48%, 13.78% and 8.82%, respectively. From the analysis of the daily energy production, daily energy consumption and energy storage, the results seem to indicate that there was some mismatching between energy supply and demand in the system. However, this can be overcome by integrating the system to a micro-grid network whereby the energy from the system can be diverted to other loads when there is a surplus and additional energy can be drawn from external sources and fed to the system when the internal supply is insufficient.  相似文献   

20.
In life cycle assessment (LCA) of solar PV systems, energy pay back time (EPBT) is the commonly used indicator to justify its primary energy use. However, EPBT is a function of competing energy sources with which electricity from solar PV is compared, and amount of electricity generated from the solar PV system which varies with local irradiation and ambient conditions. Therefore, it is more appropriate to use site-specific EPBT for major decision-making in power generation planning. LCA and life cycle cost analysis are performed for a distributed 2.7 kWp grid-connected mono-crystalline solar PV system operating in Singapore. This paper presents various EPBT analyses of the solar PV system with reference to a fuel oil-fired steam turbine and their greenhouse gas (GHG) emissions and costs are also compared. The study reveals that GHG emission from electricity generation from the solar PV system is less than one-fourth that from an oil-fired steam turbine plant and one-half that from a gas-fired combined cycle plant. However, the cost of electricity is about five to seven times higher than that from the oil or gas fired power plant. The environmental uncertainties of the solar PV system are also critically reviewed and presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号