首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
G. Iglesias  R. Carballo 《Energy》2009,34(11):1963-1975
The newly available SIMAR-44 data set, covering a 44-year period, is used together with wave buoy data to assess the wave energy resource along the Death Coast, the craggy stretch from Cape Finisterre to the Sisarga Isles. Its location at the north-western corner of the Iberian Peninsula and its coastline configuration result in exposure to a wide range of wave directions over the long Atlantic fetch. A total of 18 study sites are analysed—16 SIMAR-44 points and two wave buoys. Annual wave power in the Death Coast area is of the order of 50 kWm−1, and annual wave energy exceeds 400 MWhm−1. This vast resource is characterised thoroughly in terms of wave directions, heights and periods. A coastal wave propagation model (SWAN) is then implemented, validated based on wave buoy measurements, and used to investigate the nearshore energetic patterns. The irregular bathymetry of the Death Coast is shown to lead to local concentrations of wave energy off Capes Veo, Tosto and Finisterre and north of the Sisargas Isles, which are more conspicuous in winter and, especially, in storm situations.  相似文献   

3.
The present scenario of energy market is highly volatile due to large oscillation in the fossil fuel prices. During these periods, the high energy demand for the industries is being partially met through non-conventional energy sources such as wind and solar power. The large untapped energy potential in the Ocean is yet to be exploited due to many technological constraints. The recent decades have shown positive developments worldwide towards the ocean wave energy converters. In the present study, an improved wave energy potential estimate has been made. Based on various parameters such as physical site characteristics, environmental conditions and socio-economic regional state, the selection criteria have been suggested. This would form the basis for energy device selection for the decision makers.  相似文献   

4.
This study aims to investigate wave power along the northern coasts of the Gulf of Oman. To simulate wave parameters the third generation spectral SWAN model was utilized, and the results were validated with buoy and ADCP data. First, annual energy was calculated in the study region with the hindcast data set covering 23 years (1985-2007). The areas with the highest wave resource were determined and the area proximity to the port of Chabahar is suggested as the best site for the installation of a wave farm. Second, the average monthly wave energy in this area was investigated. The most energetic waves are provided by the southeast Indian Ocean monsoon from June to August. Finally, the wave energy resource was characterized in terms of sea state parameters. It was found that the bulk of annual wave energy occurs for significant wave heights between 1 and 3 m and energy periods between 4 and 8 s in the direction of SSE.  相似文献   

5.
This paper addresses the use of numerical wave models for assessing the impact of offshore wave farms on the nearshore wave climate. Previous studies have investigated the effect of energy extraction by wave energy devices through the use of spectral models such as SWAN, representing a wave farm as one or more barriers within the model domain and applying a constant wave energy transmission percentage across the whole wave spectrum incident at the barrier. However, this is an unrealistic representation of the behaviour of real wave energy converters. These will exhibit frequency-dependent energy absorption characteristics that will correspond to the spectral response of the device, and may reflect its ability to be tuned to extract energy at particular frequencies. This study describes a modification of the SWAN source code to enable frequency-dependent wave energy transmission through a barrier. A detailed analysis of the wave climate at the Wave Hub wave farm site is also presented, with a particular focus on the occurrence of bimodal sea states. The modified SWAN code is used to assess how impact predictions for typically occurring sea states may differ when using frequency-dependent rather than constant wave energy transmission, with reference to a previous study using the unmodified code (Millar, Smith and Reeve, 2007 [1]). The results illustrate the dependence of the magnitude of the impact on both the response function of the devices and the spectral sea state in which they are operating.  相似文献   

6.
A case study of the development of an overall resource assessment for the Wave Hub site in the southwest UK is presented. Wave Hub is one of the earliest large-scale wave farms planned. Several resource assessment studies have been performed for the site, but the published results are high-level and predicted power availability varies significantly. This paper provides a detailed overview and re-analysis of the multiple datasets used in the original studies, which consisted of a combination of physical measurement and numerical modelling. The quality of the datasets is assessed, and reasons for the discrepancies between predicted resource levels investigated. Results from a SWAN model for the region illustrate significant levels of spatial variability in the resource due to the complexity of the local bathymetry, and examination of long-term global model datasets shows notable inter-annual variability. It is thus concluded that a resource assessment methodology utilising datasets from multiple locations and of short duration significantly reduces the accuracy of the predicted levels of resource. From these results, key learnings for future developments are discussed.  相似文献   

7.
The wave power potential along the southeast Atlantic coast of the United States of America bounded by latitudes 27° N and 38° N and longitudes 82° W and 72° W (i.e. North Carolina, South Carolina, Georgia, and northern Florida) is investigated. The available data from National Data Buoy Center wave stations in the given area are examined. Temporal trends of the wave heights, wave periods and the wave power are analyzed for a time scale of weeks. The time series from the wave stations are downsampled with a 15-day moving average filter with near 50% overlapping to study the seasonal trends. Power calculated from hourly significant wave heights and average wave periods is compared to power calculated using spectral wave density. It is found that a factor of 0.61 needs to be applied to the wave power calculated from hourly significant wave heights and average periods in order to get the same results with the power calculated from spectral wave density. The mean power within 50 km of the shore is determined to be ~9 kW/m, whereas higher power (~15 kW/m) is available further offshore.  相似文献   

8.
Wave power, along with renewable energy-generating sources like tides and streams, is underestimated considering its advantageous physical properties and predictability. This paper examines possible examples of wave power installations in the Baltic Sea and the Danish part of the North Sea. Hindcasting data is used allowing estimations of wave energy generated and results show promising areas in the North Sea, but also several parts of the Baltic Sea are of interest. The study is based upon linear generator technique, placed on the seabed using point-absorbers arranged in arrays of up to several thousand units. The study aims at showing the physical possibilities of wave energy, including economical feasibility and environmental advantages of wave energy even in moderate wave climates. With discussion from two examples in the Baltic Sea, one in the Danish North Sea and a new pilot study site in the Swedish part of Skagerrak, this study show feasible illustrations of wave energy takeouts. Project examples vary in size due to distance to grid, grid voltage, and may thus be economically feasible. Examples also show considerations in societal and nature conservation matters, including aspects such as industrial and military interests, archaeological or marine reserves and local geology. The authors conclude that wave energy electric conversion is an option that needs more attention and which has several advantages compared to conventional renewable sources. Sound engineering, in combination with producer, consumer and broad societal perspective is advised for a sustainable development of wave energy conversion.  相似文献   

9.
This paper describes the study of the impact of energy absorption by wave farms on the nearshore wave climate and, in special, the influence of the incident wave conditions and the number and position of the wave farms, on the nearshore wave characteristics is studied and discussed. The study was applied to the maritime zone at the West coast off Portugal, namely in front of São Pedro de Moel, where it is foreseen the deployment of offshore wave energy prototypes and farms between the 30 m and 90 m bathymetric lines, with an area of 320 Km2. In this study the REFDIF model was adapted in order to model the energy extraction by wave farms. Three different sinusoidal incident wave conditions were considered. Five different wave farm configurations, varying the position of the wave farm, its number and the width of the navigation channels at each wave farm were analysed. The results for each configuration in terms of the change of the wave characteristics (wave height and wave direction) at the nearshore are presented, compared and discussed for three representative wave conditions.  相似文献   

10.
Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs for large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. However, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.  相似文献   

11.
就国内外近年来在波浪能发电方面的研究情况进行一个初步的分析,提出未来发展建议,为助推波浪能发电向商业化发展提供动力。虽然各国波浪能发电示范研究都有了一些进展,取得了具有较高科学价值的相关数据,但从目前技术发展来看,波浪能发电装置的研发仍处在技术攻关和产业化前夕阶段,还有诸多问题需要解决。如果能研发出一种高效可靠的波浪能发电装置,将是一种可持续提供清洁能源的途径,为海洋强国提供可靠的能源保障。  相似文献   

12.
There are opinions claiming that 70% of the world energy consumption could be provided from renewable resources by the year 2050. These resources are needed, because fossil fuels both cause pollution of the environment and will be depleted in the near future. In this regard, the objective of this study was to determine the wave energy potential and the costs associated with its application to Turkish waters. To this goal, the wave energy potential in Cesme–Izmir was investigated. Cesme is known to have abundant wind, which plays the primary role in the formation of sea waves. For this purpose, the Solar Energy Institute of Ege University carried out wind velocity measurements within the period from 05.11.1998 to 05.11.1999 at an altitude of 10 m in Cesme. The measured values were regarded as if they were taken at an altitude of 19.5 m from seawater level. With this approach, the Pierson–Moskowitz wave energy spectrum was constructed. Through this wave energy spectrum, wave energy that is to be obtained at the measurement area within one year was determined. The variation of wave energy according to each month was evaluated. Hence, the unit cost of electricity to be produced by a turbine (with a width of 1 m), assumed to be installed at the area of measurements, was calculated.  相似文献   

13.
In the last decade, multiple studies focusing on national-scale assessments of the ocean wave energy resource in Australia identified the Southern Margin to be one of the most energetic areas worldwide suitable for the extraction of wave energy for electricity production. While several companies have deployed single unit devices, the next phase of development will most likely be the deployment of parks with dozens of units, introducing the risk of conflicts within the marine space.This paper presents a geo-spatial multi-criteria evaluation approach to identify optimal locations to deploy a wave energy farm while minimizing potential conflicts with other coastal and offshore users. The methodology presented is based around five major criteria: ocean wave climatology, nature of the seabed, distance to key infrastructure, environmental factors and potential conflict with other users such as shipping and fisheries.A case study is presented for an area off the south-east Australian coast using a total of 18 physical, environmental and socio-economic parameters. The spatial restrictions associated with environmental factors, wave climate, as well as conflict of use, resulted in an overall exclusion of 20% of the study area. Highly suitable areas identified ranged between 11 and 34% of the study area based on scenarios with varying criteria weighting. By spatially comparing different scenarios we identified persistence of a highly suitable area of 700 km2 off the coast of Portland across all model domains investigated. We demonstrate the value of incorporation spatial information at the scale relevant to resource exploitation when examining multiple criteria for optimal site selection of Wave Energy Converters over broad geographic regions.  相似文献   

14.
《Energy》1987,12(6):501-507
The wave power potential off the south-west Indian coast is examined using wave data recorded at four locations for one year. Salter's method is used but modified for intermediate waters. The annual average wave power ranges between 0.7 and 10.9 kW/m, with Trivandrum recording the highest and Tellicherry the lowest. At Trivandrum, the average power varies from 2.2 to 30.9 kW/m through the different months, the peak occurring in June. Here, the monsoonal average is 17.4 kW/m and the highest recorded value is 68.9 kW/m.  相似文献   

15.
Hot Springs Cove on the West Coast of Vancouver Island, Canada is an off-grid community of approximately 80 residents reliant on diesel fuelled electricity generation. Recent concerns with on site diesel based electricity generation have prompted interest in renewable alternatives, including wave energy. To help evaluate the feasibility of deploying ocean wave energy conversion technologies near Hot Springs Cove, a preliminary assessment of the area's near-shore wave energy resources was performed. A near-shore wave model, utilizing a transfer function approach, was used to estimate wave conditions from 2005 to 2013 at a 3 h time-step. Spectral wave data from NOAA's Wavewatch3 model were used as model input boundary conditions. The wave spectra resulting from the near-shore model were parameterized to indicate the magnitude and frequency-direction distribution of energy within each sea-state. Yearly mean values as well as monthly variation of each of the spectral parameters are plotted to indicate the spatial variation of the wave climate. A site in 50 m of water, appropriate for a 2-body point absorber, was selected based on a number of generic constraints and objectives. This site is used to illustrate the temporal variation of the spectral parameters within each month of the year. The average annual wave energy at the reference location is 31 kW/m, with a minimum (maximum) monthly average of 7.5 (60.5) kW/m. The magnitude of this resource is significantly greater than other high profile sites in Europe such as the WaveHub and EMEC, and indicates that the Hot Springs Cove region may be a good candidate for wave energy development.  相似文献   

16.
The objective of this paper is to provide a synthetic tool for determining expeditiously the wave climate conditions in several areas of the Mediterranean Sea. In the open literature, several authors have already conducted this specific analysis also for the area under examination in this paper. However, the need of discussing aspects strictly related to the design of wave energy harvesters is still relevant. Therefore, considering the variety of devices and the amount of information needed for conducting both an energy-wise optimization and a structural reliability assessment, a holistic view on the topic is provided. Specifically, the paper elucidates the theoretical aspects involved in the estimation of wave energy statistics and in the calculation of relevant return values. Next, it provides synthetic data representing the mean wave power and the return value of extreme events in several coastal areas of the Mediterranean Sea. In this regard, the paper complements information available in the open literature by discussing the influence of the directional pattern of the sea states in the determination of sea state statistics as well as in the design of a wave energy harvester.  相似文献   

17.
The average wind speed and wind power density of Taiwan had been evaluated at 10 m, 30 m and 50 m by simulation of mesoscale numerical weather prediction model (MM5). The results showed that wind energy potential of this area is excellent. Taiwan has offered funds to encourage the founding of offshore wind farms in this area. The purpose of this study is to make a high resolution wind energy assessment for the offshore area of Taiwan west coast and Penghu archipelago by using WAsP. The result of this study has been used to the relative financial planning of offshore wind farm projects in Taiwan. The basic inputs of WAsP include wind weather data and terrain data. The wind weather data was from a monitoring station located on a remote island, Tongi, because that all of weather stations in the area of Taiwan west coast are affected by urbanization. SRTM was selected to be used as terrain data and downloaded from CGIAR-CSI for voids problem. The coverage of considered terrain area in this assessment work is about 300 km × 400 km that made some difficulties to run wind energy assessment of the whole area with a high resolution of 100 m. So the interested area of this study is divided into 19 areas for the wind energy assessment and mapping. The assessment results show the Changhua area has best wind energy potential in the area of Taiwan west coast which power density is above 1000 W/m2 height and the areas of Penghu archipelago are above 1300 W. These results are higher than the expected from NWP. 180 of 3 MW wind turbines were used in the study of micro sitting in the Changhua area.The type and number of the wind turbines and the layout of the wind farm is similar to the prior study of Taipower Company for demonstrating the reliability of this study. The assessment result of average net annual energy production (AEP) of the wind farm is about 11.3 GWh that is very close to the prior study. The terrain effect is also studied. The average net annual energy production will decrease about 0.7 GWh if the wind turbines were moved eastward 3600 m closer to the coast because of terrain effect. As the same reason, the average net annual energy production would be increased to 11.392 GWh if the wind farm is moved westward 3600 m away from the coast.  相似文献   

18.
As a renewable energy, the assessment of wave power potential around a country is crucial. Knowledge of the temporal and spatial variations of wave energy is required for locating a wave power plant. This study investigates the variations in wave power at 19 locations covering the Indian shelf seas using the ERA-Interim dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-Interim data is compared with the measured wave parameters in the Arabian Sea and the Bay of Bengal. Along the western shelf seas of India, the seasonal oscillations lead to variation of the wave power from the lowest seasonal mean value (2.6 kW/m) in the post-monsoon period (October–January) to the highest value (25.9 kW/m) in the south-west monsoon (June–September) period. Significant (10–20%) inter-annual variations are detected at few locations. The mean annual wave power along the eastern Indian shelf seas (2.6–9.9 kW/m) is lower than the mean annual wave power along the western part (7.9–11.3 kW/m). The total annual mean wave power available along the western shelf seas of India is around 19.5 GW. Along the eastern shelf seas, it is around 8.7 GW. In the Indian Shelf seas, the annual mean wave power is highest (11.3 kW/m) at the southern location (location 11), and the seasonal variation in wave power is also less. Hence, location 11 is a better location for a wave power plant in the Indian shelf seas.  相似文献   

19.
波浪能是一种清洁无污染、蕴藏量丰富的可再生新能源。随着可再生能源开发的日益加强,世界各国政府对波浪能的开发也越来越予以重视,波浪能开发的各项技术已不断取得突破。介绍了波浪能发电技术的基本原理,特别是其能量转换系统作了全面介绍,综述了国内外波力发电技术的现状,分析了波力发电研究的未来发展趋势,指出了波力发电对于我国未来的能源发展战略具有十分重要的意义。  相似文献   

20.
It is often advantageous to generate power with combinations of wind and ocean waves. In fact ocean waves, their generation, propagation, dissipation are directly related to wind velocity and its duration oven the sea. In this paper an attempt has been made to demonstrate statistically to present some advantages with combined wind and ocean wave power generation. Even though many conceptual techniques and methods are possible to harness combined power generation, it is important to test feasibility of combined out put as well as individual outputs mathematically. One of the major advantages of combined wind & wave power generation is to improve probability of continuous power supply (it minimises the interruptions and compensates power fluctuations with one another). Some of the major wave characteristics like wave Height (H), Time period (T), Wave length (L) significantly influence wave power generation. Interestingly, these ocean waves are dependent on wind velocity over ocean. To establish, a relation, a simple mathematical model has been developed to test different sets of combinations with wind velocities and wave characteristics. Statistical analysis has been made to estimate individual as well as combined probability density functions for a range of power outputs. Probability density functions at certain combinations showed promising results and it indicates that, combined power generation improves probability of continuous power supply (i.e. it minimises one of the major criticisms for renewable sources of energy).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号