首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Relay selection has an important effect on improving the performance of cooperative communication system. However, the frequent operation of relay selection can bring enormous control message overhead, and then decrease the performance of cooperative communication. To reduce the relay selection frequency, in this paper, we propose a relay selection scheme to choose the best relay considering successive packets transmission. In this scheme, through the parameters of data transmission rate, the length of data packet and the estimated channel state information, the best relay is selected to maximize the number of successive packets transmission while guaranteeing the given outage probability. It is proven by numerical results that the proposed relay selection scheme can support the successive packets transmission in cooperative wireless networks and the maximum number of successive packets transmission is affected by the different network parameters, i.e. packet length, data transmission rate, signal to noise ratio and Doppler frequency. Compared to previous relay selection schemes by simulation results, it is shown that the proposed relay selection scheme can improve the throughput performance efficiently.  相似文献   

2.
The network coding based applications are vulnerable to possible malicious pollution attacks. Signature schemes have been well-recognized as the most effective approach to address this security issue. However, existing homomorphic signature schemes for network coding either incur high transmission/computation overhead, or are vulnerable to random forgery attacks. In this paper, we propose a novel dynamic-identity based signature scheme for network coding by signing linear vector subspaces. The scheme can rapidly detect/drop the packets that are generated from pollution attacks, and efficiently thwart random forgery attack. By employing fast packet-based and generation-based batch verification approaches, a forwarding node can verify multiple received packets synchronously with dramatically reduced total verification cost. In addition, the proposed scheme provides one-way identity authentication without requiring any extra secure channels or separate certificates, so that the transmission cost can be significantly reduced. Simulation results demonstrate the practicality and efficiency of the proposed schemes.  相似文献   

3.
Two user authentication schemes for multi-server environments have been proposed by Tsai and Wang et al., respectively. However, there are some flaws existing in both schemes. Therefore, a new scheme for improving these drawbacks is proposed in this paper. The proposed scheme has the following benefits: (1) it complies with all the requirements for multi-server environments; (2) it can withstand all the well-known attacks at the present time; (3) it is equipped with a more secure key agreement procedure; and (4) it is quite efficient in terms of the cost of computation and transmission. In addition, the analysis and comparisons show that the proposed scheme outperforms the other related schemes in various aspects.  相似文献   

4.
A data filtering scheme is proposed for transmission and error control of haptic events in haptic-based network virtual environments; this scheme is called as priority-based haptic event filtering. Because a high update rate of approximately 1 kHz is required for haptic rendering, sophisticated transmission rate control and reduction schemes are necessary for the haptic events. Although existing schemes can reduce the transmission rate without any perception impairment, they are very sensitive to packet losses. In this paper, we prioritize the haptic events according to the delay and loss effects. Utilizing the proposed haptic event prioritization, the proposed filtering scheme adapts the transmission rate and updates the predicted loss rate according to the current network state. Our simulation and experiment results confirm that the proposed scheme can effectively select important haptic events and guarantee an improved haptic interaction quality over a bandwidth-limited lossy network than existing transmission schemes tailored for networked haptics.  相似文献   

5.
Multiple-input multiple-output (MIMO) technique plays a key role in improving the spectrum and power efficiency in future mobile communication systems. Exploiting a unified MIMO transmission scheme that can adapt with various channel conditions is well motivated both in theory and practical applications. An eigen-mode based closed-loop MIMO transmission over frequency selective fading MIMO channels, which considers receive correlation, transmit correlation and line of sight (LOS) components, is investigated by maximizing the upper bound of channel capacity under the assumption that the channel is partially known at the transmitter and perfectly known at the receiver. Based on the eigen-mode transmission, several key techniques including linear precoding, stream selection, virtual spatial hopping and online capacity estimation are proposed, and a unified MIMO transmission scheme is established. Both computer simulation and field test results show that the proposed scheme can significantly improve the spectral efficiency and link reliability under various channel conditions.  相似文献   

6.
In wireless multimedia sensor networks (WMSNs), sensor nodes use different types of sensors to gather different types of data. In multimedia applications, it is necessary to provide reliable and fair protocols in order to meet specific requirements of quality of service (QoS) demands in regard to these different types of data. To prolong the system lifetime of WMSNs, it is necessary to perform adjustments to the transmission rate and to mitigate network congestion. In previous works investigating WMSNs, exponential weighted priority-based rate control (EWPBRC) schemes with traffic load parameter (TLP) schemes in WMSNs were used to control congestion by adjusting transmission rates relative to various data types. However, when the TLP is fixed, a large change in data transmission causes a significant difference between input transmission rate and the estimated output transmission rate of each sensor node. This study proposes a novel fuzzy logical controller (FLC) pertaining to TLP schemes with an EWPBRC that estimates the output transmission rate of the parent node and then assigns a suitable transmission rate based on the traffic load of each child node, with attention paid to the different amounts of data being transmitted. Simulation results show that the performance of our proposed scheme has a better transmission rate as compared to PBRC: the delay and loss probability are reduced. In addition, our proposed scheme can effectively control different transmission data types insofar as achieving the QoS requirements of a system while decreasing network resource consumption.  相似文献   

7.
《Computer Networks》2007,51(12):3617-3631
In recent years, network mobility (NEMO) has been studied extensively due to its potential applications in military and public transportation. NEMO basic support protocol (NBSP), the current de facto NEMO standard based on mobile IPv6, can be readily deployed using the existing mobile IPv6 infrastructure. However, NBSP’s root in mobile IPv6, such as the need of care-of address (CoA) and tunneling, results in substantial performance overhead, generally known as route sub-optimality, in nested NEMO environments. This paper tackles this problem by proposing a scheme based on cellular universal IP (CUIP) to eliminate the need for CoA and tunneling in supporting nested network mobility. Using quantitative analysis, we show that the proposed scheme outperforms the existing nested NEMO schemes by multiple folds in terms of bandwidth overhead. We also show how IP fragmentation negatively impacts route optimality, and that the proposed scheme is inherently superior to the existing schemes in this regard. More importantly, while the scalability of the existing schemes generally deteriorates with the network size, the complexity of our proposed scheme is independent of the network size and thus is far more scalable. Our results show that the proposed scheme is particularly suitable for nested NEMO networks formed by mobile routers with random and ad hoc movement patterns.  相似文献   

8.
针对目前能量收集技术能够收集到的可用能量受限,导致无线协作网络中继节点处易出现能量短板的问题,为了避免整个网络因中继节点大量死亡而瘫痪,提出了一种基于能量收集技术的无线协作网络中继选择方案,即联合最大能量和最大数据传输链路的中继选择方案。首先,基于节点的能量收集状况,选出每跳中能量最大的节点进行解码转发;然后,结合每连续两跳的链路传输状态,选出与源节点和目的节点之间的数据传输信道最优者作为中继节点。结合Nakagami-m信道衰落模型,将该方案与随机选择方案、最大数据链路信道增益(MaDs)方案和基于中继-窃听链路最小信道增益(BNBF)方案进行对比分析,结果表明:在满足收集的能量足够用于下一时隙能量收集和数据传输的前提下,用于能量收集的比例越小,网络中断概率越小;联合最大能量和最大数据传输链路的中继选择方案在网络中断性能方面优于其他方案,其中断概率随信噪比的增大而减小,特别是当平均信噪比为38dB时,网络中断概率降到10^-5。  相似文献   

9.
《Computer Networks》2007,51(6):1630-1642
Hierarchical Mobile IPv6 (HMIPv6) introduces a mobility anchor point (MAP) that localizes the signaling traffic and hence reduces the handoff latency. In addition to processing binding update messages from mobile nodes (MNs) on behalf of MNs’ home agents (HAs), the MAP performs data traffic tunneling destined to or originated from MNs, both of which will burden the MAP substantially as the network size grows. To provide scalable and robust mobile Internet services to a large number of visiting MNs, multiple MAPs will be deployed. In such an environment, how to select an appropriate MAP has a vital effect on the overall network performance. In this paper, we choose four MAP selection schemes: the furthest MAP selection scheme, the nearest MAP selection scheme, the mobility-based MAP selection scheme, and the adaptive MAP selection scheme. Then, we compare their performances quantitatively in terms of signaling overhead and load balancing. It can be shown that the dynamic schemes (i.e., the mobility-based and the adaptive MAP selection schemes) are better than the static schemes (i.e., the furthest and the nearest MAP selection schemes), since the dynamic schemes can select the serving MAP depending on the MN’s characteristics, e.g., mobility and session activity. In addition, the adaptive MAP selection scheme achieves low implementation overhead and better load balancing compared with the mobility-based MAP selection scheme.  相似文献   

10.
With the concept of “Cognitive Sense of China” and “Smart Planet” proposed, wireless sensor networking is considered to be one of the most important technologies of the new century. In wireless sensor networks, how to extend battery lifetime is a core problem. In this paper, we address the problem of designing battery-friendly packet transmission policies for wireless sensor networks. Our objective is to maximize the lifetime of batteries for wireless sensor nodes subject to certain delay constraints. We present three packet transmission schemes and evaluate them with respect to battery performance. The first scheme, based on combining multiple packets, utilizes battery charge recovery effect, which allows some charge to be recovered during long idle periods. The second scheme, based on a modified version of lazy packet scheduling, draws smoother and lower current and is battery efficient. The final scheme, based on a combination of the two previous schemes has superior battery performance at the expense of larger average packet delay. All three schemes are simulated for a wireless network framework with internet traffic, and the results were validated.  相似文献   

11.
In this paper,the per-layer design for Tomlinson-Harashima precoding (THP) in the downlink of multiuser multiple-input multiple-output (MIMO) systems is investigated.In these systems,the number of the receivers is equal to that of the transmit antennas.Based on the criterion of maximum system sum-capacity,we study two per-layer joint transmit and receive filters design schemes with receive antenna beamforming (RAB) and receive antenna selection (RAS),respectively.Moreover,the differences of the equivalent channel gains and capacities between these two schemes are analyzed theoretically.Simulation results show that by these per-layer schemes,the system sum-rate is improved significantly with respect to the per-user processing scheme.  相似文献   

12.
《Computer Networks》2005,47(3):393-408
In this paper, we consider the problem of dynamic load balancing in wavelength division multiplexing (WDM)-based optical burst switching (OBS) networks. We propose a load balancing scheme based on adaptive alternate routing aimed at reducing burst loss. The key idea of adaptive alternate routing is to reduce network congestion by adaptively distributing the load between two pre-determined link-disjoint alternative paths based on the measurement of the impact of traffic load on each of them. We develop two alternative-path selection schemes to select link-disjoint alternative paths to be used by adaptive alternate routing. The path selection schemes differ in the way the cost of a path is defined and in the assumption made about the knowledge of the traffic demands. Through extensive simulation experiments for different traffic scenarios, we show that the proposed dynamic load balancing algorithm outperforms the shortest path routing and static alternate routing algorithms.  相似文献   

13.
The continual improvement in computer performance together with the prevalence of high-speed network connections having high throughput and moderate latencies enables the deployment of multimedia applications, such as collaborative virtual environments, over wide area networks (WANs). These applications can serve as simulated environments in scenarios such as emergency response training to catastrophic disasters, military training, and entertainment. Many of these systems use 3D graphics for display and may be required to distribute geometric models on demand between participants. Progressive meshes provide an attractive mechanism for such distribution. Previous uses of progressive meshes have sent data using reliable protocols (TCP). However, such protocols have disadvantages in on-demand settings, in that they: (1) use flow control, which limits performance in WANs; (2) add additional bandwidth when there is loss; (3) treat all loss as an indication of congestion; and (4) require feature-rich multicast support, which is not always available. In this paper, we modify progressive mesh models to allow reconstruction even in the event of packet loss. We use these modifications in two transmission schemes, a hybrid transmission that uses TCP and UDP to send packets and a forward error correction transmission scheme that uses redundancy to decode the information sent. We assess the performance of these transmission schemes when deployed on network testbeds that simulate wide area and wireless characteristics.Published online: 9 February 2005 Correspondence to : Bobby Bodenheimer  相似文献   

14.
协作多点技术( Coordinated Multiple Points,CoMP)作为LTE-A的最重要候选技术之一,已经得到广泛的关注。在协作多点中,有很多种传输方案,其中一种基于联合传输下的全局预编码方案能够获得极佳的系统性能,而实现该方案的前提是基站可以得到较为完整的信道状态信息。因此在信道反馈时选择显式反馈,因为相比较其他反馈方式,它可以反馈更为完整的信道状态信息,而显式反馈的缺点为需要的反馈量过大。文中利用一种采用压缩感知的信道反馈新方法对联合传输下的全局预编码方案信道显式反馈信息进行压缩,仿真结果显示在不影响系统性能的前提下,能够有效地减少反馈量,使得系统发挥最佳性能。  相似文献   

15.
Generally, the lifetime of a wireless sensor network (WSN) is defined as the duration until any sensor node dies due to battery exhaustion. If the traffic load is not properly balanced, the batteries of some sensor nodes may be depleted quickly, and the lifetime of the WSN will be shortened. While many energy-efficient routing schemes have been proposed for WSNs, they focus on maximizing the WSN lifetime. In this paper, we propose a scheme that satisfies a given ‘target’ lifetime. Because energy consumption depends on traffic volume, the target lifetime cannot be guaranteed through energy-efficient routing alone. We take an approach that jointly optimizes the sensing rate (i.e., controlling the sensor-traffic generation or duty cycle) and route selection. Satisfying the target lifetime while maximizing the sensing rate is a NP-hard problem. Our scheme is based on a simple Linear Programming (LP) model and clever heuristics are applied to compute a near-optimal result from the LP solution. We prove that the proposed scheme guarantees a 1/2-approximation to the optimal solution in the worst case. The simulation results indicate that the proposed scheme achieves near-optimality in various network configurations.  相似文献   

16.
Spread of wireless network technology has opened new doors to utilize sensor technology in various areas via Wireless Sensor Networks (WSNs). Many authentication protocols for among the service seeker users, sensing component sensor nodes (SNs) and the service provider base-station or gateway node (GWN) are available to realize services from WSNs efficiently and without any fear of deceit. Recently, Li et al. and He et al. independently proposed mutual authentication and key agreement schemes for WSNs. We find that both the schemes achieve mutual authentication, establish session key and resist many known attacks but still have security weaknesses. We show the applicability of stolen verifier, user impersonation, password guessing and smart card loss attacks on Li et al.’s scheme. Although their scheme employs the feature of dynamic identity, an attacker can reveal and guess the identity of a registered user. We demonstrate the susceptibility of He et al.’s scheme to password guessing attack. In both the schemes, the security of the session key established between user and SNs is imperfect due to lack of forward secrecy and session-specific temporary information leakage attack. In addition both the schemes impose extra computational load on resource scanty sensor-nodes and are not user friendly due to absence of user anonymity and lack of password change facility. To handle these drawbacks, we design a mutual authentication and key agreement scheme for WSN using chaotic maps. To the best of our knowledge, we are the first to propose an authentication scheme for WSN based on chaotic maps. We show the superiority of the proposed scheme over its predecessor schemes by means of detailed security analysis and comparative evaluation. We also formally analyze our scheme using BAN logic.  相似文献   

17.
Link stability issue is significant in many aspects, especially for the route selection process in mobile ad-hoc networks (MANETs). Most previous works focus on the link stability in static environments, with fixed sampling windows which are only suitable for certain network topologies. In this paper, we propose a scheme to estimate the link stability based on link connectivity changes, which can be performed on the network layer, without the need of peripheral devices or low layer data. We adopt a variable sized sampling window and propose a method to estimate the link transition rates. The estimation scheme is not restricted to specific network topologies or mobility models. After that, we propose a routing method which adjusts its operating mode based on the estimated link stability. Simulation results show that the proposed scheme can provide correct estimation in both stationary and non-stationary scenarios, and the presented routing protocol outperforms conventional routing schemes without link stability estimation.  相似文献   

18.
Multimedia broadcast multicast service (MBMS) with inherently low requirement for network resources has been proposed as a candidate solution for using such resources in a more efficient manner. On the other hand, the Next Generation Mobile Network (NGMN) combines multiple radio access technologies (RATs) to optimize overall network performance. Handover performance is becoming a vital indicator of the quality experience of mobile user equipment (UE). In contrast to the conventional vertical handover issue, the problem we are facing is how to seamlessly transmit broadcast/multicast sessions among heterogeneous networks. In this paper, we propose a new network entity, media independent broadcast multicast service center (MIBM-SC), to provide seamless handover for broadcast/multicast sessions over heterogeneous networks, by extensions and enhancements of MBMS and media independent information service (MIIS) architectures. Additionally, a network selection scheme and a cell transmission mode selection scheme are proposed for selecting the best target network and best transmission mode. Both schemes are based on a load-aware network capacity estimation algorithm. Simulation results show that the pro- posed approach has the capability to provide MBMS over heterogeneous networks, with improved handover performance in terms of packet loss rate, throughput, handover delay, cell load, bandwidth usage, and the peak signal-to-noise ratio (PSNR).  相似文献   

19.
Secure data sharing in third-party environments such as the cloud requires that both authenticity and confidentiality of the data be assured, especially when such structures encode sensitive information (such as in XML documents). Existing authentication schemes for trees and directed acyclic graphs (DAGs) are authenticity-preserving, but not confidentiality-preserving, and lead to leakage of sensitive information during authentication. In this paper, we propose a family of three leakage-free authentication schemes for (1) tree data structures, (2) directed acyclic graphs (DAGs), and (3) graphs (with cycles), which are also efficient. This family of schemes referred to as the “structural signatures” is based on the structure of the tree as defined by tree traversals and aggregate signatures. We also show through complexity and performance analysis that our scheme is practical in terms of the cost for authentication of data. We have also discussed two applications of the proposed scheme: (1) automatic correction and recovery from structural errors, and (2) secure publish /subscribe of XML documents.  相似文献   

20.
Topology Control is one of the most important techniques used in wireless multi-hop networks to obtain the desired network property. The most conventional MST-based topology control schemes both achieve a very good performance in terms of transmission power and implicitly consider network capacity, but they hardly have flexibility in determining whether more importance is placed on network capacity or not. Therefore, we jointly consider network capacity and energy efficiency in this paper. A new localized topology control scheme is proposed to meet the above two competing objectives by finding a balance between them through using Get_min-cost_for_link_(). The simulation results show that, when compared with some typical MST-based schemes, the proposed scheme can achieve the desired performance in terms of network capacity under the appropriate combination of weight values though it has a slightly worse performance in terms of transmission power. Moreover, the proposed scheme achieves the most balanced distribution with respect to path capacity among the compared schemes, especially when both k-hop neighborhood size and network node density increase. More importantly, the proposed scheme can flexibly determine that either network capacity or energy consumption should be given more attention according to the demand of the network application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号