首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work determined the association between several parameters of biodiesel production from waste cooking oil (WCO) using waste bovine bone (WBB) as catalyst to achieve a high conversion to fatty acid methyl ester (%FAME). The effect of three independent variables was used as the optimum condition using response surface methodology (RSM) for maximizing the %FAME. The RSM analysis showed that the ratio of MeOH to oil (mol/mol), catalyst amount (%wt), and time of reaction have the maximum effects on the transform to FAME. Moreover, the coefficient of determination (R2) for regression equations was 99.19%. Probability value (P < 0.05) demonstrated a very good significance for the regression model. The optimal values of variables were MeOH/WCO ratio of 15.49:1 mol/mol, weight of catalyst as 6.42 wt%, and reaction time of 128.67 min. Under the optimum conditions, %FAME reached 97.59%. RSM was confirmed to sufficiently describe the range of the transesterification parameters studied and provide a statistically accurate estimate of the best transform to FAME using WBB as the catalyst.  相似文献   

2.
The sequences of development that cut across industrialization, population growth, environmental and economic reasons led individuals and organizations to have direct responsibilities in the development and implementation of sound technologies that will curtail the emissions of hazardous gases and particulate matter. As a result, this study focuses on the optimization and characterization of biodiesel from waste cooking oil. It involves the characterization of the feed stock, the transesterification, the purification of the transesterified waste cooking oil, the optimization of the biodiesel produced using 24 factorial experimental designs, and the characterization of the biodiesel produced from waste cooking oil. Result obtained reveals that operating temperature of 30°C, transesterification time of 60 min, catalyst weight of 0.5%, and alcohol to oil ratio of 6:1 are the optimum conditions with optimum yield of 90% of biodiesel from waste cooking oil. Experimental determinations of some useful properties of the biodiesel produced were carried out for the purpose of confirming the quality as well as the identification of the biofuel. These were moisture content, specific gravity, viscosity, acid value, sulfated ash, cetane number, cloud point, flash point, distillation characteristic, and refractive index. The results obtained were 0.097%, 0.854, 4.90 mm2/s, 0.80 mgKOH/g, 0.01%, 48.00, 53°F, 143°C, 320°C, and 1.412, respectively. The results obtained showed that all the parameters compare favorably with literatures and the standard biodiesel specifications; hence production of biodiesel from waste cooking oil is possible.  相似文献   

3.
4.
Biodiesel production via transesterification of waste cooking oil (WCO) with methanol using waste chicken bone-derived catalyst was investigated. The calcium carbonate content in the waste chicken bone was converted to calcium oxide (CaO) at a calcinations temperature of 800°C. The catalysts were prepared by calcination at 300–800°C for 5 h and catalyst characterization was carried out by X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) surface area measurement. CaO was used as catalyst for biodiesel production. The results of the optimization imply that the catalyst concentration of 3.0 wt%, methanol to oil ratio of 3:1, and reaction temperature of 80°C for 3 h provide the maximum values of yield in methyl ester production. Reusability of the catalyst from calcined waste chicken bone was studied for four times, with a good yield.  相似文献   

5.
In this study, potassium hydroxide-treated animal bones were employed? as a solid heterogeneous catalyst in transesterification of waste cooking oil. This catalyst was characterized by the Fourier-transform infrared spectroscopy (FTIR), and it displayed high-catalytic activity for biodiesel production. Optimum conditions for biodiesel production were catalyst loading 6.0% (w/w) of oil, methanol/oil molar ratio 9:1, calcination temperature 800°C, reaction temperature 65°C, and reaction time of 5 h, which gave maximum biodiesel yield of 84%. Reusability of the catalyst was also confirmed by repeated use of the same catalyst three times without losing much of its activity. Hence, calcined goat bones were found to be a potentially applicable catalyst for biodiesel production at industrial scale.  相似文献   

6.
The optimum conditions for biodiesel production by the transesterification of waste oil form the pork grilling process in the food factory in Udon Thani, Thailand, using NaOH and KOH as catalysts, has been investigated. A Box–Behnken Design (BBD) followed by a Response Surface Methodology (RSM) with 30 runs was used to assess the significance of three factors: the methanol to oil molar ratio, the amount of NaOH and KOH used, and the reaction time required to achieve the optimum percent fatty acid methyl ester (%FAME). The measured %FAME following transesterification using NaOH as a catalyst was an optimum 95.6% with a methanol to oil molar ratio of 12.2:1, a NaOH percentage mass fraction of 0.49% and a reaction time of 63 min. Using KOH as a catalyst, the %FAME was an optimum 93.0% with a methanol to oil molar ratio of 12:1, a KOH percentage mass fraction of 0.61% and a reaction time of 72 min. The coefficient of determination (R2) for regression equations were 98.55% and 93.99%, respectively. The probability value (P<0.05) demonstrated a very good significance for the regression model. The physicochemical properties of the biodiesel obtained from the waste oil met the ASTM 6751 biodiesel standard, illustrating that waste oil from the pork grilling process can be used as a raw material for biodiesel production by transesterification.  相似文献   

7.
This study was carried out to produce biodiesel from olive oil waste by transesterification reaction. Several important reaction variables (the weight ratio of oil to methanol, the temperature, and reaction time) were evaluated to obtain a high quality of biodiesel fuel that meets authentic standards. Solar energy was applied for the transesterification reaction and electricity generated by photovoltaic panels was used to power a motor for mixing the reaction solution.  相似文献   

8.
Biodiesel was developed from an unconventional feedstock, i.e. an equivalent blend of castor bean and waste chicken oil through the alkaline-catalyzed transesterification with methanol. The process variables including the alkaline catalyst concentration, methanol to oil molar ratio, reaction temperature, reaction time, and the alkaline catalyst type were investigated. The highest yield of biodiesel (97.20 % ~ 96.98 % w/w ester content) was obtained under optimum conditions of 0.75 % w/w of oil, 8:1 methanol to oil molar ratio, 60°C temperature, and a duration of 30 min. Properties of the produced biodiesel satisfied those specified by the ASTM standards. The results thus indicated that the suggested blend oils are suitable feedstock for the production of biodiesel. The process was found to follow pseudo first-order kinetics, and the activation energy was found to be 8.85 KJ/mole.  相似文献   

9.
In the present work the production of a biodiesel from watermelon seed oil (Citrullus vulgaris) by methanol-induced transesterification using an alkaline catalyst (potassium hydroxide, KOH) has been examined. The influence of the operating variables such as agitation speed, temperature, reaction time, alcohol amount, and catalyst concentration was determined experimentally and found to be 550 rpm agitation rate, 60°C reaction temperature, 55 min reaction time, 20% of methanol, and 13 g of catalysts concentration for 2.5 liters of oil. The yield of biodiesel from the watermelon methyl ester (WME) under optimized conditions is found to be 91%. The properties of biodiesel are measured as per ASTM standards and compared with the base diesel.  相似文献   

10.
The aim of this study is to evaluate the potential use of biodiesel produced from waste cooking oil (WCO) in Mexico and its CO2 emission reduction potential for the Mexican transport sector and associated costs. The results show, based on 2010 data, that the potential of biodiesel from WCO is between 7.8 PJ and 17.7 PJ that represent between 1.5% and 3.3% of petro-diesel consumption for the road transport sector and can reduce between 0.51 and 1.02 Mt of CO2, (1.0%–2.7% of CO2-associated emissions), depending on the recovery ratio of WCO from vegetable oil consumption for cooking and considering CO2 emissions for biodiesel production and methanol emissions during production and combustion in the blend. Primary energy used to produce 1 MJ of WCO-biodiesel is 0.8727 MJ, while literature reports 1.2007 MJ to produce 1 MJ of petro-diesel. Biodiesel costs are similar to petro-diesel costs if WCO is free. The paper offers suggestions for policies that promote increased recollection of WCO for biodiesel production and reduced illegal marketing of WCO, which is the main barrier to increase biodiesel production from WCO. The data used for the analysis is based on a case study of a WCO biodiesel plant that operates in Mexico City.  相似文献   

11.
Camelina oil is a low-cost feedstock for biodiesel production that has received a great deal of attention in recent years. This paper describes an optimization study on the production of biodiesel from camelina seed oil using alkaline transesterification. The optimization was based on sixteen well-planned orthogonal experiments (OA16 matrix). Four main process conditions in the transesterification reaction for obtaining the maximum biodiesel production yield (i.e. methanol quantity, reaction time, reaction temperature and catalyst concentration) were investigated. It was found that the order of significant factors for biodiesel production is catalyst concentration > reaction time > reaction temperature > methanol to oil ratio. Based on the results of the range analysis and analysis of variance (ANOVA), the maximum biodiesel yield was found at a molar ratio of methanol to oil of 8:1, a reaction time of 70 min, a reaction temperature of 50 °C, and a catalyst concentration of 1 wt.%. The product and FAME yields of biodiesel under optimal conditions reached 95.8% and 98.4%, respectively. The properties of the optimized biodiesel, including density, kinematic viscosity, acid value, etc., were determined and compared with those produced from other oil feedstocks. The optimized biodiesel from camelina oil meets the relevant ASTM D6571 and EN 14214 biodiesel standards and can be used as a qualified fuel for diesel engines.  相似文献   

12.
The present study deals with the development of a biodiesel production reactor based on pressurized ultrasonic cavitation technique. Transesterification of Jatropha oil takes place by passing low-frequency ultrasonic irradiation in the reaction mixture flowing at pressurized conditions in the sonochemical reactor. Reaction variables such as reaction time, molar ratio, catalyst concentration, and pressure of the reaction mixture were investigated to find the optimal parameters for biodiesel production. The energy requirement decreases with increase in pressure. Very low value of Specific Energy Consumption (0.018 kWh/kg) and significantly high value of Energy Use Index (598.83) are obtained when the pressure of reaction mixture is 15 bar. Increasing the pressure thereafter, leads to nominal gains. Ultrasonic irradiation at high-pressure condition has an additional advantage of rapid reaction and lower requirement of alcohol to oil molar ratio and catalyst concentration. Fifteen bar pressure is optimal for biodiesel production.  相似文献   

13.
ABSTRACT

The major drawback of the wide applicability of biodiesel is its price compared to the conventional petro-diesel. The feedstock and the applied catalyst in the transesterification reaction are the main contributor for the overall cost of the biodiesel production. Thus, this study summarizes the optimization of a batch transesterification reaction of used domestic waste oil (UDWO) with methanol using CaO, which can be easily prepared from different cheap and readily available natural sources. Quadratic model equations were elucidated describing the effect of methanol:oil molar ratio, CaO concentration wt.%, reaction temperature °C, reaction time h, and mixing rate rpm on biodiesel yield and conversion percentage. The optimum operating conditions were found to be competitive with those of the high-cost immobilized enzyme Novozym435. An overall acceptable agreement was achieved between the produced biodiesel, its blends with petro-diesel and the available commercial petro-diesel, and the international fuel standards. A precise and reliable logarithmic mathematical model was predicted correlating the production of pure high-quality biodiesel yield with the conversion percentage which were measured based on the fatty acid methylester content and decrease in viscosity, respectively.  相似文献   

14.
One kind of novel biodiesel waste cooking oil ethyl ester (WCOEE) was prepared via transesterfication reaction between waste cooking oil and ethanol. The tribological behavior of diesel/WCOEE blend was evaluated with a four-ball tribometer. The wear resistance, extreme pressure, and friction reduction of the blend were improved with increasing WCOEE. The optimal content of WCOEE in the blend was 20 vol%. It was also found that free fatty acids (FFAs) had a positive effect on the wear resistance of blend. The lubrication improvement of the blend was ascribed to the formation of polyester film and high polarity of fatty acid ethyl ester.  相似文献   

15.
Compared to lipid extraction from algae, little work has been performed for cyanobacteria. In this article it is aimed to show high lipid accumulation potential of Synechococcus sp., Cyanobacterium aponinum and Phormidium sp. cells in BG-11 medium. Four different pH values (6–9) and NaNO3 (0.25, 0.5, 1.0, 1.5 g/L) concentrations were examined at different incubation days to discover the highest lipid accumulation. The maximum lipid content could be achieved in the medium containing 0.25 g/L NaNO3 at pH 7 for Synechococcus sp., pH 8 for C. aponinum and pH 9 for Phormidium sp. after 15 days. The maximum lipid contents and C16 and C18 methyl ester yields were measured as 42.8% and 46.9% for Synechococcus sp., 45.0% and 67.7% for C. aponinum, 38.2% and 90.6% for Phormidium sp. The saturated compounds were 74.5%, 77.9%, 84.7% for Synechococcus sp., C. aponinum and Phormidium sp., respectively. These crude lipids could be promising feedstock for biodiesel production.  相似文献   

16.
Biodiesel production from waste cooking oil with methanol was carried out in the presence of poly(vinyl alcohol) with sulfonic acid groups (PVA-SO3H) and polystyrene with sulfonic acid groups (PS-SO3H), at 60°C. The PVA-SO3H catalyst showed higher catalytic activity than the PS-SO3H one. In order to optimize the reaction conditions, different parameters were studied. An increase of waste cooking oil conversion into fatty acid methyl esters with the amount of PVA-SO3H was observed. When the transesterification and esterification of WCO was carried out with ethanol over PVA-SO3H, at 60°C, a decrease of biodiesel production was also observed. The WCO conversion into fatty acid ethyl ester increased when the temperature was increased from 60 to 80°C. When different amounts of free fatty acids were added to the reaction mixture, a slight increase on the conversion was observed. The PVA-SO3H catalyst was reused and recycled with negligible loss in the activity.  相似文献   

17.
Heterogeneous transesterification of waste cooking palm oil (WCPO) to biodiesel over Sr/ZrO2 catalyst and the optimization of the process have been investigated. Response surface methodology (RSM) was employed to study the relationships of methanol to oil molar ratio, catalyst loading, reaction time, and reaction temperature on methyl ester yield and free fatty acid conversion. The experiments were designed using central composite by applying 24 full factorial designs with two centre points. Transesterification of WCPO produced 79.7% maximum methyl ester yield at the optimum methanol to oil molar ratio = 29:1, catalyst loading = 2.7 wt%, reaction time = 87 min and reaction temperature = 115.5 °C.  相似文献   

18.
Biofuels are derived from biomass using biochemical, thermochemical, and physical and chemical extraction processes. Waste oils from animal and vegetable sources continue to be important biomass feedstock due to the potential benefits over petroleum and some of the virgin vegetable oil based fuels. In this paper, the chemical, thermal, and physical properties of biofuels derived from virgin and waste sources are reviewed. In addition, the processes used for recovering bio-oils from animal fats (beef tallow, lard, and poultry waste) and greases, and purification and refining of bio-oils are discussed as well as the resulting performance as a fuel. Particular focus will be on production of biofuels from fish waste. The potential for biofuel from fish waste is a function of the location and size of the processing plant, type of fuel requirements, and characteristics of the fish waste.  相似文献   

19.
In this study, a simple and solvent-free method was used to prepare sulfated zirconia-alumina (SZA) catalyst. Its catalytic activity was subsequently investigated for the transesterification of Jatropha curcas L. oil to fatty acid methyl ester (FAME). The effects of catalyst preparation parameters on the yield of FAME were investigated using Design of Experiment (DOE). Results revealed that calcination temperature has a quadratic effect while calcination duration has a linear effect on the yield of FAME. Apart from that, interaction between both variables was also found to significantly affect the yield of FAME. At optimum condition; calcination temperature and calcination duration at 490 °C and 4 h, respectively, an optimum FAME yield of 78.2 wt% was obtained. Characterization with XRD, IR and BET were then used to verify the characteristic of SZA catalyst with those prepared using well established method and also to describe the catalyst characteristic with its activity.  相似文献   

20.
废弃油脂含有较多的游离脂肪酸,使用传统方法制备生物柴油时,必须先除去其所含的游离脂肪酸,这将会使过程复杂且增加成本.以浓H2SO4为催化剂,将游离脂肪酸先进行甲酯化,再以NaOH为催化剂,对甘油三酯进行酯交换制备生物柴油,通过正交试验分析游离脂肪酸甲酯化及甘油三酯酯交换的最佳条件.产品检测结果表明,由废弃油脂制备的生物柴油产品完全符合要求,可以替代矿物柴油使用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号