共查询到20条相似文献,搜索用时 93 毫秒
1.
Short ramie fiber reinforced poly(lactic acid) (PLA) composites without and with maleic anhydride (MA) were developed. The influence of PLA-g-MA as a compatibilizer on the properties of the composites was studied. The tensile, flexural and impact strength of the composites have improvements with the addition of PLA-g-MA. The morphology of fracture surface evaluated by SEM indicates that the composites with the addition of PLA-g-MA can get better adhesion between the fiber and the matrix. And the Vicat softening temperature and the degradation temperature of the composites are increased with the addition of PLA-g-MA. However, PLA-g-MA leads the glass transition temperature (Tg) decrease according to the DSC results. 相似文献
2.
Ramie/PLA composites with the diisocyanates as compatibilizer were fabricated by extrusion and injection molding. The influence of different diisocyanates and various diisocyanate content on the mechanical properties and thermal properties of the composites was investigated. The presence of the diisocyanates in the composites lead to the improvements in mechanical properties and thermal properties of the composites. The morphologies of fracture surface using scanning electron microscopy (SEM) provided evidence of improved interfacial adhesion between ramie and PLA from the addition of the diisocyanates. The composites containing isophorone diisocyanate (IPDI) showed the best mechanical properties. The comparison of various IPDI content showed that the composites with 1.5% IPDI could get the optimum mechanical properties, and the excess diisocyanate content resulted in the decrease in the mechanical properties of the composites. However, IPDI content had almost no effect on the crystallization and melting behavior of the ramie/PLA composites. 相似文献
3.
In this work, the compressive mechanical properties, thermal stability and morphology of cellulose fiber-reinforced phenolic foams were studied. The cellulose fiber-reinforced phenolic foam showed the greatest compressive mechanical properties by incorporating 2 wt.% of the reinforcement. The compressive modulus and strength of 2 wt.% cellulose fiber-reinforced phenolic foam were increased by 21% and 18%, respectively, relative to the unreinforced material. The addition of the cellulose fibers to the phenolic foam slightly decreased the thermal stability of the material. The study on the morphology of the cellulose-reinforced phenolic foams via Scanning electron microscopy (SEM) indicated a strong bonding between the fibers and phenolic matrix. In addition, the incorporation of the cellulose fibers into the foam resulted in a decreased cell size and increased cell density of the material. The incorporation of 2 wt.% of cellulose fibers into the phenolic foam led to obtain the material with the best features. 相似文献
4.
The effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites was evaluated. Alkali treatment of the fibers and reaction with organosilanes as coupling agents were applied to improve fiber–matrix adhesion. Fiber loadings of 1, 3, 5, and 7 wt% were incorporated to the phenolic matrix and tensile, flexural, morphological and thermal properties of the resulting composites were studied. In general, mechanical properties of the composites showed a maximum at 3% of fiber loading and a uniform distribution of the fibers in such composites was observed. Silane treatment of the fibers provided derived composites with the best thermal and mechanical properties. Meanwhile, NaOH treatment improved thermal and flexural properties, but reduced tensile properties of the materials. Therefore, the phenolic composite containing 3% of silane treated cellulose fiber was selected as the material with optimal properties. 相似文献
5.
The hybrids of multi-walled carbon nanotube and poly(lactic acid) (MWCNT/PLA) were prepared by a melt-blending method. In order to enhance the compatibility between the PLA and MWCNTs, the surface of the MWCNTs was covalently modified by Jeffamine® polyetheramines by functionalizing MWCNTs with carboxylic groups. Different molecular weights and hydrophilicity of the polyethermaines were grafted onto MWCNTs with the assistance of a dehydrating agent. The results showed that low-molecular-weight Jeffamine® polyetheramine modified MWCNTs can effectively improve the thermal properties of PLA composites. On the other hand, high-molecular-weight and poly(oxyethylene)-segmented polyetheramine could render the modified MWCNTs of well dispersion in PLA, and consequently affecting the improvements of mechanical properties and conductivity of composite materials. With the addition of 3.0 wt% MWCNTs, the increment of E′ of the composite at 40 °C was 79%. For conductivity, the surface resistivity decreased from 1.27 × 1012 Ω/sq for neat PLA to 8.30 × 10−3 Ω/sq for the composites. 相似文献
6.
Graphene was noncovalently functionalized with poly(sodium 4-styrenesulfonate) (PSS) and then successfully incorporated into the epoxy resin via in situ polymerization to form functional and structural nanocomposites. The morphology and structure of PSS modified graphene (PSS-g) were characterized with transmission electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The effects of PSS-g additions on tensile, electrical and thermal properties of the epoxy/graphene nanocomposites were studied. Noncovalent functionalization improved interfacial bonding between the epoxy matrix and graphene, leading to enhanced tensile strength and modulus of resultant nanocomposites. The PSS-g additions also enhanced electrical properties of the epoxy/PSS-g nanocomposites, resulting in a lower percolation threshold of 1.2 wt%. Thermogravimetric and differential scanning calorimetric results showed the occurrence of a two-step decomposition process for the epoxy/PSS-g nanocomposites. 相似文献
7.
In this research, sodium-montmorillonite (Na-MMT) at four different concentrations (0.5%, 1.0%, 2.0% and 4.0%) and didecyl dimethyl ammonium chloride (DDAC) were used to modify wood flour (WF) in a two-step process to form organo-montmorillonite (OMMT) inside the WF. Then the WFs with three sizes were mixed with poly(lactic acid) (PLA) to produce WF/PLA composites. The treated WF was characterized and some physical and mechanical properties of the composites were tested. The results showed that: (1) Na-MMT was successfully transformed to OMMT and uniformly distributed inside WF; (2) at 0.5% MMT concentration, water repellency, flexural and tensile properties of the composites were improved significantly. However, after introducing more OMMT, the enhancements diminished because of poor interfacial adhesion caused by OMMT agglomeration; (3) the composites with the maximum size of WF showed the most significant improvements among all, suggesting bigger WF was more suitable for this modification process. 相似文献
8.
The graphene nanoribbon was prepared from the carbon nanotubes using the chemical approach, and was used for preparing the poly (vinyl alcohol) nanocomposites. It was discovered that the prepared graphene nanoribbon contained a lot of oxygen groups. Due to the presence of these oxygen groups, the nanoribbon could homogeneously disperse in both water and poly (vinly alcohol) matrix. It was also found that there were strong interactions between the graphene nanoribbon and the poly (vinyl alcohol) through hydrogen bonding. The interactions gave rise to the thermal stability of the host polymer. Furthermore, the presence of the nanofiller also resulted in a significant improvement of the mechanical performance of the prepared nanocomposites. The tensile strength and the Young’s modulus of the nanocomposite loaded with 2.0 wt% graphene nanoribbon increased by 85.7% and 65.2% respectively. The overall results indicate that the graphene nanoribbon is suitable for preparing high-performance polymer composites. 相似文献
9.
The present study focuses on the effect of size-scale combination of silica on the mechanical and dynamic mechanical properties of acrylate based (50% Bis-GMA and 50% TEGDMA by weight) composites with an aim to overcome the conventional problem of high-volume fraction filling of acrylate based composites, typically used in restorative dentistry. Two classes of light-cured composites based on the size-scale combination of silica (7 nm + 2 μm; 14 nm + 2 μm) as the filler were prepared. FTIR spectroscopy revealed functionality and interactions whereas morphological investigations concerning the state of distribution and dispersion of nano- and micro-silica has been carried out by SEM–EDX Si-dot mapping. The dynamic mechanical properties, compressive, flexural and diametral tensile strengths were characterized. Micromechanical analysis of viscoelastic storage moduli following Kerner composite model has revealed an enhancement in the reinforcement efficiency of the nanohybrid composites based on the filler size-scale combination of 14 nm + 2 μm with 10 wt.% nanofiller loading. The compressive strength of the micro-filled composite (with 2 μm silica only) was found to remain comparable to that of the nanohybrid with 5 wt.% of 7 nm silica and 10 wt.% of 14 nm silica filled composites. Diametral tensile strength has been observed to be influenced by the size-scale combination and extent of nanofiller loading. The effective volume fractions in the composites validating the experimentally determined DTS were calculated following Nicolais–Narkis model. Our study demonstrates the conceptual feasibility of exploring the optimization of size-scale combinations of filler for enhancement in reinforcement efficiency by manipulating the volume fraction of filler induced immobilized polymer chains by resorting to the principle of micromechanics. 相似文献
10.
The effect of adding graphene in epoxy containing either an additive (MP) or reactive-type (DOPO) flame retardant on the thermal, mechanical and flammability properties of glass fiber-reinforced epoxy composites was investigated using thermal analysis; flexural, impact, tensile tests; cone calorimetry and UL-94 techniques. The addition of MP or DOPO to epoxy had a thermal destabilization effect below 400 °C, but led to higher char yield at higher temperatures. The inclusion of 10 wt% flame retardants slightly decreased the mechanical behavior, which was attributed to the poor interfacial interactions in case of MP or the decreased cross-linking density in case of DOPO flame retarded resin. The additional graphene presence increased flexural and impact properties, but slightly decreased tensile performance. Adding graphene further decreased the PHRR, THR and burning rate due to its good barrier effect. The improved fire retardancy was mainly attributed to the reduced release of the combustible gas products. 相似文献
11.
Tetrapod-shaped zinc oxide (T-ZnO) whiskers and boron nitride (BN) flakes were employed to improve the thermal conductivity of phenolic formaldehyde resin (PF). A striking synergistic effect on thermal conductivity of PF was achieved. The in-plane thermal conductivity of the PF composite is as high as 1.96 W m−1 K−1 with 30 wt.% BN and 30 wt.% T-ZnO, which is 6.8 times higher than that of neat PF, while its electrical insulation is maintained. With 30 wt.% BN and 30 wt.% T-ZnO, the flexural strength of the composite is 312.9% higher than that of neat PF, and 56.2% higher that of the PF composite with 60 wt.% BN. The elongation at break is also improved by 51.8% in comparison with that of the composite with 60 wt.% BN. Such a synergistic effect results from the bridging of T-ZnO whiskers between BN flakes facilitating the formation of effective thermal conductance network within PF matrix. 相似文献
12.
The flame retardant and mechanical properties of polypropylene (PP) composites filled with microencapsulated red phosphorus (MRP) and magnesium hydrate (Mg(OH)2)/aluminum hydrate (Al(OH)3) were measured. It was found that the synergistic effects between the MRP and Mg(OH)2/Al(OH)3 on the flame retardant and tensile properties of the composites were significant. The limit oxygen index and smoke density rank of the composites increased nonlinearly while the horizontal combustibility rate decreased nonlinearly with increasing the MRP weight fraction. The Young modulus and the tensile elongation at break increased while the tensile yield strength and tensile fracture strength decreased slightly with increasing the MRP weight fraction. Both the V-notched Izod and Charpy impact strength increased with increasing the MRP weight fraction. Moreover, the tensile yield strength of the composites estimated using an equation published previously was roughly close to the measured data. 相似文献
13.
A PMR polyimide composite reinforced with three-dimensional (3D) woven basalt fabric is fabricated for medium high temperature applications. The PMR polyimide matrix resin is derived from 4,4′-methylenediamine (MDA), diethyl ester of 3,3′,4,4′-oxydiphthalic (ODPE) and monoethyl ester of Cis-5-norbornene-endo-2,3-dicarboxylic acid (NE). The rheological properties of the PMR polyimide matrix resin are investigated. Based on the curing reaction of the PMR type polyimide and the rheological properties, an optimum two-step fabrication method is proposed. The three dimensional fabric preforms are impregnated with the polyimide resin in a vacuum oven at 70 °C for 1 h followed by removing the solvent and pre-imidization. The composites are then consolidated by an optimized molding procedure. Scanning electron microscopy analysis shows that needle shaped voids are generated in yarns and the void volume fraction is 4.27%. The decomposition temperature and the temperature at 5% weight loss of the composite post-cured at 320 °C for 24 h are 440 °C and 577 °C, respectively. The dielectric constant and the dielectric loss of the composite are measured by circular cavity method at 7–12 GHz. The tensile strength and the modulus in the warp direction of the composite are 436 MPa and 22.7 GPa. The composite shows a layer-by-layer fracture mode in three-point bending test. The flexure strength and modulus in the warp direction of the composite are 673 MPa and 27.1 GPa, respectively. 相似文献
14.
A corrected Linde's criterion considering the shearing effect for anisotropic progressive damage is developed to describe the elastic-brittle behavior of fiber-reinforced composites. Based on this criterion, a new three-dimensional (3D) nonlinear finite element model for static damage of unidirectional fiber-reinforced composites is proposed within a framework of continuum mechanics. The model is validated by taking 3D braided composites as example to study the relationship between the damage of materials and the effective elastic properties. The impregnated unidirectional composites are treated as homogeneous and transversely isotropic materials, whose properties are calculated by the Chamis' equations. The more accurate failure mechanisms of composites are revealed in the simulation process, and the effects of braided parameters on the uniaxial tensile behavior of 3D braided composites are investigated. Comparison of numerical results and experimental data is also carried out, which shows a better agreement than that of former study using the 3D Hashin's criterion. 相似文献
15.
Fumed silica particles with average primary particle diameters of 12 and 40 nm were combined with a low viscosity bisphenol E cyanate ester resin to form composite materials with enhanced storage modulus and reduced damping behavior, as evidenced by dynamic mechanical analysis (DMA). The storage modulus increased with volume fraction of fumed silica in both the glassy and rubbery regions, but the increase was more pronounced in the rubbery region. The maximum increase in storage modulus in the glassy region was 75% for 20.7 vol% of 40 nm fumed silica, while the same composition showed a 231% increase in the rubbery storage modulus. Furthermore, decreases in damping behavior were used to estimate the effective polymer-particle interphase thickness. The glass transition temperature of the nanocomposites was not changed significantly with increasing volume fraction. 相似文献
16.
Transparent conductive composites can be achieved from PVDF–MWCNT at very low concentration of MWCNT. These composites show different degree of UV–Visible radiation absorption depending on MWCNT concentration in composites. The composition dependent dielectric properties and AC conductivity were also measured for these composites. Properties like AC conductivity, dielectric constant and loss are increasing with filler concentration. The variations of DC conductivity against composition and temperature are also reported. The electrical hysteresis and electrical set are observed for PVDF–MWCNT composites when subjected to heating–cooling cycle. The validity of different theoretical models depicting percolation threshold with respect to DC conductivity was tested for these composites. 相似文献
17.
This study simulates the tensile failure of injection-molded short glass fiber-reinforced polyamide 6,6 (GF/PA66). Tensile tests of unreinforced PA66 are first conducted and the material properties are obtained by fitting a simulated stress–strain curve to the experiment result. Using the obtained material properties, failure simulations of GF/PA66 composites are performed for four types of specimens with various fiber lengths and fiber orientation distributions. In the simulations, multiscale mechanistic model, which can simulate micromechanical damage, and Micromechanics Model (MM), which has very low computational cost, are adapted and the results are compared with experiments. Both models reproduce the experiment results well. Considering the computational cost, MM is the better model for predicting the failure properties of GF/PA66 composites. 相似文献
18.
Novel hyperbranched polyimides/attapulgite (HBPI/AT) nanocomposites were successfully synthesized by in situ polymerization. HBPI derived from novel 2,4,6-tri[3-(4-aminophenoxy)phenyl]pyridine (TAPP) and 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride (BPADA). 4,4′-diphenylmethane diisocyanate (MDI) modified AT copolymerized with HBPI and the nanocomposites formed multilinked network. Chemical structure, morphology, thermal behavior, and mechanical properties of nanocomposites were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), thermal gravimetric analysis (TGA), dynamic mechanical analysis (DMA), and tensile testing et.al. Results indicated that modified AT was homogeneously dispersed in matrix and resulted in an improvement of thermal stability, mechanical properties and water resistance of HBPI/AT nanocomposites. 相似文献
19.
In this study, cadmium selenide/zinc sulfide (CdSe/ZnS) quantum dots (QDs) were introduced into poly(lactic acid) (PLA) for fabrication of photoluminescent PLA/QDs scaffolds. TEM images revealed that the QDs were uniformly dispersed in the PLA. Compressive modulus and thermal stability of the PLA/QDs scaffolds are higher than those of the unfilled PLA scaffold. Cytotoxicity test results confirmed the non-cytotoxicity of the PLA/QDs scaffolds. During the process of in vitro degradation, the degradation rate of the PLA was accelerated by the presence of the QDs, and the molecular weight distributions of the PLA/QDs scaffolds were much broader when compared with the unfilled PLA ones. During the first 84 weeks of the degradation process, the photoluminescence (PL) intensity of the PLA/QDs scaffolds decreased with almost the same degradation ratio. The results suggested that the CdSe/ZnS QDs have potential applications for monitoring in vivo degradation of tissue engineering scaffolds. 相似文献
20.
Microfibrillated cellulose (MFC) based thin membrane-like fully biodegradable composites were produced by blending MFC suspension with polyvinyl alcohol (PVA). Desired MFC content in the composites could be easily obtained by varying the PVA solution concentration. Chemical crosslinking of PVA was carried out using glyoxal to increase the mechanical and thermal properties of the composites as well as to make the PVA partially water-insoluble. Examination of composite surfaces and fracture topographies indicated that the MFC fibrils were well bonded to PVA and uniformly distributed. Infrared spectroscopy showed that acetal linkages could be formed in the MFC–PVA composites by a glyoxal crosslinking reaction. Sol–gel and swelling results indicated that crosslinking reaction made PVA partially insoluble and reduced its swelling ability. The MFC–PVA composites had excellent tensile properties which were further enhanced by crosslinking. Thermogravimetric analysis (TGA) showed higher thermal stability for MFC–PVA composites compared to PVA. The crosslinked MFC–PVA composites showed even higher thermal stability. Differential scanning calorimetry (DSC) indicated that crosslinking increased the glass transition temperature and reduced melting temperature and crystallinity of PVA in MFC–PVA composites. Results also indicated that nano- and micro-fibrils in MFC inhibit the crystallization of PVA. These composites could be good candidates for replacing today’s traditional non-biodegradable plastics. 相似文献