首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin films of cadmium oxide (CdO) were synthesized by layer-by-layer deposition method on indium doped tin oxide (ITO) substrates. Post-deposition annealing at 250 °C for 24 h produced pure phase CdO films by removal of trace amount of cadmium hydroxide, as confirmed from X-ray diffractogram. First time employment of CdO in place of TiO2 in dye-sensitized solar cells is reported to check feasibility and cell performance. A dye-sensitized nanocrystalline CdO photo-electrode was obtained by adsorbing cis-dithiocyanato (4,4′-dicarboxylic acid-2,2′-bipyridide) ruthenium (II) (N3) dye by keeping at 45 °C for 20 h. The efficiency of dye-sensitized nanocrystalline CdO thin film solar cell was increased from 0.24% to 2.95% due to dye adsorption. This must be highest reported conversion efficiency for other metal oxides than TiO2based dye-sensitized solar cells.  相似文献   

2.
Al-doped ZnO thin films have been prepared by a novel successive chemical solution deposition technique. The variation in morphological, structural, electrical, and optical properties of nanostructured films with doping concentration is investigated in details. It was demonstrated that rapid photothermal processing (RPP) improves the quality of nanostructured ZnO films according to the enhancement of resonant Raman scattering efficiency, and the suppression of the visible luminescence with the increase of RPP temperature. It was found from the I-V characteristics of ZnO/Si heterojunction that the average short-circuit current density is about 8 mA/cm2. For 1%Al-doped ZnO/SiO2/Si structure, the short-circuit current density is about 28 mA/cm2. The improvement shown in the characteristics may be assigned partially to the reduction of the defect density in the nanostructured Al-doped ZnO films after RPP. The correlations between the composition, microstructure of the films and the properties of the solar cell structures are discussed. The successive chemically deposited Al-doped ZnO thin film offers wider applications of low-cost solar cells in heterojunction structures.  相似文献   

3.
A simple method for spontaneous formation of nanoripples on ZnO thin films was developed, and these nanostructured ZnO films were used as hole-blocking layer in inverted organic solar cells. Moreover, the size (height) of nanoripples on ZnO surface could be controlled in the range of several tens of nanometers. Among various ZnO films, surface structures with ∼70 nm-high nanoripples resulted in the best photovoltaic performance of the organic solar cell consisting of a stack of indium tin oxide/ZnO/ regioregular poly (3-hexyl thiophene), phenyl-C61-butyric acid methyl ester/Ag. The power conversion efficiency of inverted organic solar cells consisting of with 70 nm-high ZnO nanoripples (∼3.2%) was higher than that of a relatively flat ZnO surface by a factor of ∼2. Existence of nanoripples on ZnO results in a higher contact area between ZnO and active layer, leading to an enhanced photovoltaic performance.  相似文献   

4.
In this paper we present a realization of an extremely thin absorber (ETA) layer solar cell by the chemical spray pyrolysis method. CuInS2 absorber was deposited onto a blocking layer coated ZnO nanorods grown on a transparent conductive oxide. Layers and cells were characterized by optical and Raman spectroscopy, and scanning electron microscopy. Current–voltage, spectral response and electron beam induced current measurements were applied to solar cells. ZnO nanorod cell showed twice higher short circuit current density than the flat reference. ETA cells with efficiency of 2.2% (j=12 mA/cm2, Voc=425 mV, FF=43%) and of 2.5% were prepared using TiO2-anatase and an indium sulfide blocking layer, respectively.  相似文献   

5.
Silicon thin films with different crystalline volume fractions have been deposited at different power and pressure conditions. Structural properties of the films have been investigated. The effects of crystalline volume fractions and grain sizes on the degradation of photoconductivity have been studied. Single-junction solar cells have been fabricated with protocrystalline and nanocrystalline Si as absorber layer. Protocrystalline silicon solar cells show less than 1% degradation upto 50 h of light soaking. Then the cells degrade upto 500 h and thereafter become steady. Nanocrystalline solar cells show degradation initially and become steady after 10 h of light soaking. Using protocrystalline silicon as absorber layer the solar cell efficiency degrades 9% before stabilization, whereas using nanocrystalline silicon as absorber layer (Xc~65%) the solar cell efficiency degrades 2.9%. Stabilized efficiency of the second type of cell is better than that of the first cell, but initial efficiency is higher for the first cell (η=7.1%).  相似文献   

6.
Indium doped ZnO thin films have been prepared on heated Corning 7059 glass by the pyrosol spray method. It was found that indium doping has an important role in grain growth at high substrate temperature. Indium also was used to improve the electrical properties, acting as an N type dopant, and we obtained highly conductive ZnO:In thin films with a resistivity of 3.0 × 10−3 Ω cm. At substrate temperatures from 425°C to 475°C, the deposited ZnO:In thin films have clear hexagonal crystallites and, therefore, a highly textured surface showing optical haze phenomena due to the crystallites. The haze ratio of ZnO:ln thin films can be controlled from 10% to 50% at the wavelength of 550 nm by varying the substrate temperature from 375°C to 475°C.  相似文献   

7.
Molybdenum-doped indium oxide (IMO) thin films were deposited at 450 °C for varying molybdenum concentrations in the range of 0.5-2 at% by the spray pyrolysis technique. These films confirmed the cubic bixbyite structure of polycrystalline In2O3. The preferred growth orientation along the (2 2 2) plane shifts to (4 0 0) on higher Mo doping levels. The films doped with 0.5 at% Mo showed high mobility of 76.9 cm2/(V s). The high visible transmittance extends well into the near-infrared region. A possibility of using the produced IMO films in nanocrystalline (nc) silicon solar cell applications is discussed in this article. The morphological studies showed a change in the microstructure, which is consistent with the change in crystallographic orientation.  相似文献   

8.
In this work, characterization of dye-sensitized solar cells (DSSC) using nanocrystalline ZnO thin film electrodes combined with a novel light absorbing dye Coomassie Brilliant Blue (CBB), in acetonitrile solution is reported. The absorption spectrum of this dye in acetonitrile solution indicates appreciable absorption in the range of 500–700 nm with a sharp peak at 597 nm indicating its possible use as a photosensitizer for ZnO. The current–voltage and efficiency characteristics of a DSSC based on this dye and ZnO acceptor are measured for two methods of depositing the ZnO. Better response is achieved for nanocrystalline ZnO thin films than for sprayed films in terms of cell output.  相似文献   

9.
New semiconducting metal oxides of various compositions are of great interest for efficient solar water oxidation. In this report, Mo-doped SnO2 (Mo:SnO2) thin films deposited by reactive magnetron co-sputtering in the Ar and O2 gas environment are studied. The Sn to Mo ratio in the films can be controlled by changing the O2 partial pressure and the deposition power of the Sn and Mo targets. Increasing the Mo concentration in the film leads to the increase in the oxygen vacancy density, which limits the maximum achievable photocurrent density. The thin films exhibit a direct band gap of 2.7 eV, the maximum achievable photocurrent density of 0.6 mA cm−2 at 0 VRHE and the onset potential of 0.14 VRHE. The incident photon to current transfer (IPCE) efficiency of 22% is shown at a 450 nm wavelength. The initial performance of the Mo:SnO2 thin films is evaluated for solar water oxidation.  相似文献   

10.
This study reports the colloidal synthesis of copper indium disulfide (CuInS2) nanoparticles in different crystal phases to be employed as thin film photoanodes in photoelectrochemical water splitting process. First, CuInS2 nanoparticles with chalcopyrite-, zincblende-, wurtzite-as well as polytypic-phases have been synthesized using hot injection method. The effects of solvent, temperature and type of precursors on the phase design have been thoroughly investigated via various spectroscopic techniques such as XRD, SEM, HRTEM, UV-Vis and PL spectroscopy and Zeta particle size analysis. The XRD spectra have been revealed that the all the targeted nanoparticles had good crystallinity and free from undesired binary sulfides. The synthesized nanoparticles have been re-dispersed in N, N-dimethylformamide (DMF) to form nanoink paste and applied on fluorine doped tin oxide coated glass substrate by doctor blade technique. DMF has been found to be an enviable solvent for thin film fabrication since it could lead to the crack free and uniform surface formation. The chalcopyrite thin film has shown the best photoelectrochemical performance with the photocurrent density of ∼15 mA cm−2 and conversion efficiency of 6.7%. Howbeit, thin films photoanodes bearing wurtzite, zincblende and polytypic CuInS2 nanoparticles have been investigated to compare the performance of different crystal phases for photoelectrochemical solar cell applications. Moreover, it should be emphasized that all thin film electrodes have been investigated under 1-sun condition without any surface modification, chemical treatment and etching. Additionally, the thin films except wurtzite structure exhibited good stability along 2 h under dark and illuminated conditions.  相似文献   

11.
Polycrystalline ZnO : Al thin films have been prepared by the (Sol–gel) chemical deposition method. The ZnO : Al thin films are very transparent (90%) in the near UV, VIS and IR regions. The films are oriented along the c-axis ([0 0 2] direction) in the hexagonal structure. It is known that pure ZnO thin films are not chemically stable in corrosive media, but aluminium stabilizes the ZnO system and increases its electrical conductivity. Finally, the ZnO : Al thin films are reasonably stable under storage in air and in reactive atmospheres like O2, H2O, H2 or in weak acids. Dark- and photo-conductivity of the ZnO : Al films are very high (1–100 Ω−1 cm−1), so that they can be used as transparent conductors in solar cells or in electrochromic devices.  相似文献   

12.
High quality epitaxial indium zinc oxide (heavily indium oxide doped) (epi-n-IZO) thin films were optimized by laser-molecular beam epitaxy (L-MBE) i.e., pulsed laser deposition (PLD) technique for fabricating novel iso- and hetero-semiconductor–insulator–semiconductor (SIS) type solar cells using Johnson Matthey “specpure”- grade 90% In2O3 mixed 10% ZnO (as commercial indium tin oxide (ITO) composition) pellets. The effects of substrate temperatures, substrates and heavy indium oxide incorporation on IZO thin film growth, opto-electronic properties with 1 0 0 silicon (Si), gallium arsenide (GaAs) and indium phosphide (InP) wafers were studied. As well as the feasibility of developing some novel models of iso- and hetero-SIS type solar cells using epi-IZO thin films as transparent conducting oxides (TCOs) and 1 0 0 oriented Si, GaAs and InP wafers as base substrates was also studied simultaneously. The optimized films were highly oriented, uniform, single crystalline approachment, nano-crystalline, anti-reflective (AR) and epitaxially lattice matched with 1 0 0 Si, GaAs and InP wafers without any buffer layers. The optical transmission T (max) 95% is broader and absolute rivals that of other TCOs such as ITO. The highest conductivity observed is σ=0.47×103 Ω−1 cm−1 (n-type), carrier density n=0.168×1020 cm−3 and mobility μ=123 cm2/V s. From opto-electronic characterizations, the solar cell characteristics and feasibilities of fabricating respective epi-n-TCO/1 0 0 wafer SIS type solar cells were confirmed. Also, the essential parameters of these cells were calculated and tabulated. We hope that these data be helpful either as a scientific or technical basis in semiconductor processing.  相似文献   

13.
Indium-doped zinc oxide thin films were deposited on glass substrates by the chemical spray technique. Hydrated zinc 2,4-pentanedionate was used as zinc source. Four different indium compounds were separately used as dopants (indium nitrate, indium sulfate, indium acetate, and indium chloride). The effect of the thickness on the electrical, structural, morphological and optical characteristics of ZnO:In thin films was studied. Electrical resistivity values corresponding to good conductive electrodes were obtained irrespective of the indium compound used, although a decrease in electrical resistivity is found in all the cases as the film thickness increases, reaching a saturation value of 2×10−3 Ω cm. All films were polycrystalline with a wurtzite phase, and exhibited a (1 0 1) preferential orientation almost irrespective of neither the doping source nor thickness. The surface morphology was analyzed by scanning electron microscopy and a strong dependence on the indium compound and thickness was found, since grain geometry variations from rounded to rod-like forms were observed. As the film thickness increases, the film transmittance and the band-gap values decrease. Band-gap energy values were in the range of 3.21 to 3.44 eV.  相似文献   

14.
Mo2C, which has a unique electronic structure similar to the electronic structure of Pt, is considered as the material with the greatest potential to replace Pt as a catalyst for the electrocatalytic hydrogen evolution reaction (HER). However, Mo2C thin films have not attracted enough attention in the field of electrocatalysis. This work proposes a method for preparing Mo2C thin films as a catalyst for electrocatalytic HER through radiofrequency magnetron sputtering. The HER activity of the Mo2C thin film in acidic and alkaline media is studied by changing the deposition power of the Mo2C target and doping Ni for structural modification. Results show that increasing the deposition power of Mo2C can significantly enhance the HER activity of the films in acidic and alkaline media, and metal Ni doping can further enhance the HER activity of the Mo2C films. In an alkaline environment at a current density of 10 mA cm−2, the films demonstrate an overpotential of as low as 163 mV with a Tafel slope of 107 mV·dec−1. In acidic media, the films present the corresponding overpotential of 201 mV and a Tafel slope of as low as 96 mV·dec−1. Moreover, the Ni-doped Mo2C films have excellent HER stability. The synergy between doped Ni and Mo vacancies optimizes the strength of the Mo–H bond and the adsorption and desorption equilibrium of active H, thus enhancing HER kinetics. This work guides the possible structural design of Mo2C thin films for electrocatalytic HER.  相似文献   

15.
Dye-sensitized solar cells based on nanoporous oxide semiconductor thin films such as TiO2, Nb2O5, ZnO, SnO2, and In2O3 with mercurochrome as the sensitizer were investigated. Photovoltaic performance of the solar cell depended remarkably on the semiconductor materials. Mercurochrome can convert visible light in the range of 400–600 nm to electrons. A high incident photon-to-current efficiency (IPCE), 69%, was obtained at 510 nm for a mercurochrome-sensitized ZnO solar cell with an I/I3 redox electrolyte. The solar energy conversion efficiency under AM1.5 (99 mW cm−2) reached 2.5% with a short-circuit photocurrent density (Jsc) of 7.44 mA cm−2, a open-circuit photovoltage (Voc) of 0.52 V, and a fill factor (ff) of 0.64. The Jsc for the cell increased with increasing thickness of semiconductor thin films due to increasing amount of dye, while the Voc decreased due to increasing of loss of injected electrons due to recombination and the rate constant for reverse reaction. Dependence of photovoltaic performance of mercurochrome-sensitized solar cells on semiconductor particles, light intensity, and irradiation time were also investigated. High performance of mercurochrome-sensitized ZnO solar cells indicate that the combination of dye and semiconductor is very important for highly efficient dye-sensitized solar cells and mercurochrome is one of the best sensitizers for nanoporous ZnO photoelectrode. In addition, a possibility of organic dye-sensitized oxide semiconductor solar cells has been proposed as well as one using metal complexes.  相似文献   

16.
Nb-doped TiO2 films have been fabricated by RF magnetron sputtering as protective material for transparent-conducting oxide (TCO) films used in Si thin film solar cells. It is found that TiO2 has higher resistance against hydrogen radical exposure, utilizing the hot-wire CVD (catalytic CVD) apparatus, compared with SnO2 and ZnO. Further, the minimum thickness of TiO2 film as protective material for TCO was experimentally investigated. Electrical conductivity of TiO2 in the as-deposited film is found to be 10−6 S/cm due to the Nb doping. Higher conductivity of 10−2 S/cm is achieved in thermally annealed films. Nitrogen treatments of Nb-doped TiO2 film have been also performed for improvements of optical and electric properties of the film. The electrical conductivity becomes 4.5×10−2 S/cm by N2 annealing of TiO2 films at 500 °C for 30 min. It is found that the refractive index n of Nb-doped TiO2 films can be controlled by nitrogen doping (from n=2.2 to 2.5 at λ = 550 nm) using N2 as a reactive gas. The controllability of n implies a better optical matching at the TCO/p-layer interface in Si thin film solar cells.  相似文献   

17.
This article reports the preparation of three-dimensional (3D) mesoporous zinc oxide (ZnO) films and their application in solar cells. The films were obtained through electrochemical deposition in DMSO solutions by using PS colloidal crystal as templates. The ZnO films with inverse opal (IO) structure were obtained after removing the templates by thermolysis. The ordered porous ZnO films were used to prepare hybrid solar cells by infiltrating the films with poly(3-hexylthiophene) (P3HT) or P3HT:ZnO nanocomposite. Results showed that the interpenetrating network of both ZnO(IO) and P3HT can form continuous pathways for electron and hole transport. By infiltrating a P3HT:ZnO nanocomposite into the porous ZnO films, the photocurrent of the solar cell can be dramatically improved. The cell shows the Voc and Isc of 462 mV and 444.3 μA/cm2, respectively. By using a 420 nm cutoff filter, the cell retains about 80% and 50% of its original Voc and Isc after continuous white-light illumination (100 mW/cm2) for 10 h. Stability of the device under above conditions was estimated to be 51 h.  相似文献   

18.
Semiconducting ternary metal oxide thin films exhibit a promising application for solar energy conversion. However, the efficiency of the conversion is still limited by a band gap of a semiconductor, which determines an obtainable internal photovoltage for solar water splitting. In this report the tunability of the tin tungstate band gap by O2 partial pressure control in the magnetron co-sputtering process is shown. A deficiency in the Sn concentration increases the optical band gap of tin tungstate thin films. The optimum band gap of 1.7 eV for tin tungstate films is achieved for a Sn to W ratio at unity, which establishes the highest photoelectrochemical activity. In particular, a maximum photocurrent density of 0.375 mA cm−2 at 1.23 VRHE and the lowest reported onset potential of −0.24 VRHE for SnWO4 thin films without any co-catalyst are achieved. Finally, we demonstrate that a Ni protection layer on the SnWO4 thin film enhances the photoelectrochemical stability, which is of paramount importance for application.  相似文献   

19.
Thin film deposition of Cu2O and application for solar cells   总被引:1,自引:0,他引:1  
Deposition conditions of cuprous oxide (Cu2O) thin films on glass substrates and nitrogen doping into Cu2O were studied by using reactive radio-frequency magnetron sputtering method. The effects of defect passivation by crown-ether cyanide treatment, which simply involves immersion in KCN solutions containing 18-crown-6 followed by rinse, were also studied. By the crown-ether cyanide treatment, the luminescence intensity due to the near-band-edge emission of Cu2O at around 680 nm was enhanced, and the hole density was increased from 1016 to 1017 cm−3. Finally, polycrystalline p-Cu2O/n-ZnO heterojunctions were grown for use in solar cells. Two deposition sequences were studied, ZnO deposited on Cu2O and Cu2O deposited on ZnO. It was found that the crystallographic orientation and current–voltage characteristics of the heterojunction were significantly influenced by the deposition sequence, both being far superior for the heterojunction with structure Cu2O on ZnO than for the inverse structure. We successfully obtained a photoresponse for the first time in the deposited thin film of Cu2O/ZnO.  相似文献   

20.
Hydrogen production (HP) by photocatalytic water splitting (PWS) is becoming more and more popular on a global scale. The world's largest and most accessible renewable energy source—the Sun—as well as widely accessible metal oxide-based photoelectrodes are both utilized in this process. The preparation of pure and doped iridium oxide (IrOx) films is attempted in this work in an effort to better understand how Cr and La affect optical and HP efficiency as well as electrode stability. By using FE-SEM, the films' varying thicknesses and nanorod-like morphologies were detected. UV–Vis spectra reveal that the composition has an impact on the films' absorption and reflectance. IrOx has an optical band gap (Eg) of 2.9 eV, and this value decreased/increased after Cr doping/La codoping. The micro-Raman spectra, which showed that the Eg mode of Ir–O stretching was red-shifted from 563 to 553 cm−1, validate the films' amorphous nature. The resultant (IrOx) films were utilized in the HP via the solar photoelectrochemical (PEC) process. The codoped film, which has a solar-to-hydrogen conversion efficiency of 2.32% and a hydrogen evolution rate of 23.5 mmol h−1cm−2, is the most efficient and stable photoelectrode among the electrodes under examination. The highest absorbed photon-to-current conversion efficiency (APCE%) values for pure and codoped IrOx photoelectrodes were 3.62%@460 nm and 5.54%@490 nm, respectively. With enhancement factors of 2.77, 1.89, and 2.90 for pure IrOx, IrOx:5% Cr, and IrOx:Cr,2.5% La, respectively, the Jph increased to 1.58, 1.70, and 1.83  mA cm−2 at 90 °C. After ten runs, the codoped photoelectrode still has 99.2% of its initial photocurrent, compared to 80.8% and 82.8% for pure and Cr-doped IrOx. Calculated Tafel slopes, corrosion rates, and PEC thermodynamic parameters show how codoping and doping affect photoelectrode performance and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号