首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
针对多四旋翼无人机系统的编队飞行问题,提出了基于特殊正交群SO(3)的协同控制设计方法.在给出编队空间队形和通信拓扑描述后,建立了多四旋翼无人机系统SO(3)控制模型.由于SO(3)与传统俯仰/偏航/滚转三通道模型具有不同的结构,文中进一步研究了SO(3)中无人机之间相对误差的表示方法,设计了适用于多飞行器的SO(3)控制器实现对编队和姿态的协同控制.推力控制器用于调节无人机的位置与速度,并在此基础上构造旋转矩阵形式的姿态协同指令.文中相应设计了SO(3)姿态控制器用于实现指令跟踪,最后从理论上对协同稳定性进行了分析.提出的控制方法能够使得多四旋翼无人机形成期望的队形,并且保持姿态一致进行稳定飞行.仿真结果验证了本文方法的有效性.  相似文献   

3.
This paper investigates the leader-follower formation problem for a group of quadrotors. Finite-time control scheme and prescribed performance control method, which are regarded as two highlights, are introduced in this paper. First, a control scheme with prescribed performance is used to control the translational movements to ensure the quadrotors obtain a relative gentle transient process and an adjustable steady-state error bound. Then, the desired orientations for the rotation subsystem provided by translational movements part are stabilised by a fixed-time control law. Finally, by designing a finite-time formation controller, followers can track the desired position and heading angle in finite time, which is important for the practical application. Several simulation results are given to show the effectiveness of the designed control strategy.  相似文献   

4.
In this paper, the impact of the medium access protocols on the average consensus problem over wireless networks for a group of quadrotors is established. The stabilization of each helicopter is guaranteed using a simple and bounded nonlinear control strategy. We study the case of a group of quadrotors communicating over a wireless network considering both directed and undirected graphs of information flow. It turns out that the media access control (MAC) protocols have a direct impact in both convergence time and average consensus solution, i.e., the solution of the average consensus is no longer the average of the initial conditions. It will be shown that the solution for the average consensus problem over a wireless network depends directly on the MAC algorithm. Simulations are provided to demonstrate the theoretical results. In addition, to validate the control strategy some experimental tests have been carried out to control the yaw angle of two quadrotors.  相似文献   

5.
In this article, a nonlinear tracking controller is designed based on Lyapunov stability for a novel aerial robot. The proposed 6‐rotor configuration improves stability and payload lifting capacity of the robot compared with conventional quadrotors while avoiding further complexities in the robot dynamics and steering principles. The dynamical model of the robot is derived using Newton‐Euler method. The model represents a nonlinear, coupled, and underactuated system. The proposed control strategy includes 2 main parts: an attitude controller and a position controller. Both the attitude and position controls are Lyapunov‐based nonlinear tracking controllers that guarantee the asymptotic convergence of the states' tracking errors to zero. Simulation results are presented to illustrate appropriate performance of the closed‐loop system in terms of position/attitude tracking even in the presence of wind disturbance.  相似文献   

6.
针对城市交通网络中紧急车辆在行驶区段中如何较快地到达终点的问题,提出了一种基于Petri网的交通紧急控制策略模型。利用Davidson函数中行驶时间与交通流之间的对应关系,得出紧急车辆在道路上的最短行驶时间,并将其作为权重,运用Dijkstrsa算法进行最短路径寻优;采用紧急信号灯控制策略对最短路径上的交叉口信号灯进行了调整,减少紧急车辆在交叉口的延滞时间,并运用Petri网理论,建立紧急车辆在交叉口的紧急信号灯控制模型。为了描述紧急信号灯控制策略的动态行为特性,将其各部分关键要素分别设计为相应的Petri网子模型。通过模型的一个仿真实例,进行了紧急控制策略与普通策略的实验对比,实验结果表明前者可以对紧急车辆的到达时间进行优化。  相似文献   

7.
In this work, min–max time consensus tracking is implemented on a multi-quadrotor testbed. The trajectory of a leader quadrotor is generated manually. The remaining quadrotors converge onto this reference trajectory in min–max time using a local feedback control strategy which is known to be globally optimal. Further, the effect of finite communication/measurement rate on consensus tracking is analysed. The bounds on the deviations of the trajectories due to finite communication/measurement rate are characterized. The theoretical claims made are verified through experiments.  相似文献   

8.
This paper proposes a novel strategy to improve the performance and fault tolerance of multi-rotor vehicles. The proposed strategy uses dual axis tilting propellers and thus enables three different actuation mechanisms, namely, gyroscopic torques, thrust vectoring and differential thrusting. Unlike the conventional quadrotor, the proposed strategy offers a wider range of control torques by combining the three actuation mechanisms. Conventional quadrotors cannot be reconfigured if one of rotors fails. However, the proposed strategy is still able to reconfigure the vehicle with complete failure of one rotor and a pair of adverse motors. In order to prove this concept, a dual axis tilting UAV is first designed and prototyped. Next, a mathematical representation of the prototyped vehicle is modelled and verified using experiments. Then, a control system is developed based on a PD controller and pseudoinverse control allocator and validated through tests on a rig and flight tests. The tests show that the vehicle is faster than a conventional counterpart and that it can resist the failure of two rotors. Finally, this paper suggests how to lead further substantial improvements in performance.  相似文献   

9.
This review concentrates on three main challenges of controlling a quadrotor unmanned aerial vehicle (UAV) as an underactuated mechanical system (UMS). The challenges include underactuation, model uncertainty, and actuator failure. The review also illustrates the state of the quadrotor control research in an attempt to find practical solutions for those challenges. By definition, a UMS has less number of control actions than the number of degrees of freedom to be controlled. Hence, traditional control strategies developed for fully actuated systems are not directly applicable to UMS. Research on UMS is one of the most interesting topics in the robotics and control community because of its relevance to a variety of applications. Examples include humanoid robots and most aerial and underwater vehicles. However similar to any other nonlinear systems, the stability and control of quadrotors suffer from intrinsic complexities exasperated by underactuation, model uncertainties and actuator failure. In this review article, we are going to address these problems and discuss the solutions mostly concerning the application of different control strategies presented in recent literature. We also present the frontiers and research directions towards improving performance of quadrotors for emerging and complex applications.  相似文献   

10.
The proportional–integral–derivative (PID) control is the most common control approach used in industrial and commercial mechatronics products. The PID control has been relevant across history since it is useful and intuitive in practical implementations. The selection of three parameters involving the present, past, and future of the system makes it simple and efficient. Unmanned aerial vehicles (UAVs) such as quadrotors have become very common and helpful in many tasks such as surveillance, mapping, and inspection, among others. Quadrotors present highly nonlinear and coupled dynamics that can be stabilized using four control inputs. These facts have prompted the attention of many control practitioners and theoretical specialists. The literature reveals that PID control has been the natural choice to stabilize quadrotor UAVs since its simplicity and robustness. The advantages of the PID control have been considered to perform combinations with other techniques. This paper surveys applications of PID control structures in quadrotor UAVs paying attention to linear, nonlinear, discontinuous, fractional order, intelligent and adaptive schemes. Future directions of PID control are also discussed, and open problems are highlighted.  相似文献   

11.
多自主水下航行器系统一致性编队跟踪控制   总被引:2,自引:0,他引:2  
研究了自主水下航行器的编队路径跟踪问题.基于无源性理论与一致性跟踪理论,在仅有部分AUV获取编队速度信息情形下,设计一种分布式控制律,实现了集群AUV的一致性编队跟踪.控制律分为2个部分:一部分基于无源性同步原理,建立了协同误差到跟踪误差的无源性通道;另一部分为一致性协同跟踪控制器,保证每个AUV相对于虚拟领航者的不一致参考信息通过协商达到最终一致状态.文章应用Nested Matrosov定理证明了整个闭环系统的稳定性,仿真结果验证了上述方法的有效性和可行性.  相似文献   

12.
This paper presents the ground control station developed for a platform composed by multiple unmanned aerial vehicles for surveillance missions. The software application is fully based on open source libraries and it has been designed as a robust and decentralized system. It allows the operator to dynamically allocate different tasks to the UAVs and to show their operational information in a 3D realistic environment in real time. The ground control station has been designed to assist the operator in the challenging task of managing a system with multiple UAVs, trying to reduce his workload. The multi-UAV surveillance system has been demonstrated in field experiments using two quadrotors equipped with visual cameras.  相似文献   

13.
针对复杂飞行环境下的多四旋翼飞行器系统,提出一种基于有限时间扩张状态观测器的主从编队控制策略(FTESO-LFFC).对于领航者子系统,提出一种积分滑模控制(ISM)策略,通过引入的积分项,消除了传统滑模控制中的趋近阶段,提高了系统的鲁棒性.对于跟随者子系统,提出一种非奇异终端滑模控制(N TS M)策略,该方法在解决...  相似文献   

14.
In practice, the parameters of the flight controller of the quadrotors are commonly tuned experimentally with respect to a certain type of reference, such as the step reference and the unit-ramp reference. In this way, the performance of the flight controller might be affected by the variations of the references in real-time flights. Besides, real-time dynamic effects such as measure noises, external disturbances and input delays, which are usually neglected in the reported works, could easily deteriorate the performances of the flight controllers. This work is thereby motivated to develop a high-performance flight control approach utilizing a modified disturbance rejection technique for the quadrotors suffering from input delays and external disturbances. This control approach is developed in a cascaded structure and the attitude angles are chosen as the pseudo control inputs of the translational flight of the quadrotors. To facilitate the development, the dynamic model of the quadrotors is firstly formulated by including the effects of input delays, and the dynamics of the pseudo control variables are identified through real-time experiments. Based on the identified model, the flight control approach is proposed with a modified active disturbance rejection technique, which consists of a time optimal tracking differentiator, an extended state observer/predictor, and a nonlinear proportional–derivative controller. The tracking differentiator is designed to generate smooth transient profiles for the references, and the extended state observer/predictor is implemented for lumped disturbance estimation and state estimation considering the input delays. With the aid of the tracking differentiator and the extended state observer/predictor, the nonlinear proportional–derivative controller can thereby establish a fast tracking control and effectively reject the estimated disturbances. To verify the feasibilities of this development, comparative tests are carried out in both simulations and experiments. The results show that in the presence of small lumped disturbances, such as the measurement zero-drift, the steady-state errors of the proposed control approach for the ramp responses are less than 2 cm, and in the tests of sinusoidal trajectory tracking, the cross-tracking errors are less than 0.04 m. When with large disturbance airflow that is equivalent to strong breeze, the steady-state error achieved by the proposed flight controller is also less than 10 cm. All of these facts demonstrate the effectiveness of this development.  相似文献   

15.
In this paper a novel hybrid control strategy is developed for trajectory tracking control of unmanned underwater vehicle (UUV). The proposed hybrid control strategy consists of two subsystems: a virtual velocity controller and a sliding-mode controller. The tracking errors are shown to asymptotically converge to zero by Lyapunov stability theory using the new approach, whereas in the traditional backstepping method, speed jump occurs if the tracking error changes suddenly. The biologically inspired model is designed to smooth the virtual velocity controller output, avoid speed jumps of underwater vehicles and satisfy the thruster control constraint. The effectiveness and efficiency of the proposed control strategy are demonstrated through simulations and comparison studies.  相似文献   

16.
In this paper, a fully distributed control scheme for aerial cooperative transporting and assembling is proposed using multiple quadrotor–manipulator systems with each quadrotor equipped with a robotic manipulator. First, the kinematic and dynamic models of a quadrotor with multi-Degree of Freedom (DOF) robotic manipulator are established together using Euler–Lagrange equations. Based on the aggregated dynamic model, the control scheme consisting of position controller, attitude controller and manipulator controller is presented. Regarding cooperative transporting and assembling, multiple quadrotor–manipulator systems should be able to form a desired formation without collision among quadrotors from any initial position. The desired formation is achieved by the distributed position controller and attitude controller, while the collision avoidance is guaranteed by an artificial potential function method. Then, the transporting and assembling tasks request the manipulators to reach the desired angles cooperatively, which is achieved by the distributed manipulator controller. The overall stability of the closed-loop system is proven by a Lyapunov method and Matrosov's theorem. In the end, the proposed control scheme is simplified for the real application and then validated by two formation flying missions of four quadrotors with 2-DOF manipulators.  相似文献   

17.
高速动车组是由多节车辆与钩缓装置链接而成的复杂系统. 将钩缓装置等效成弹簧 − 阻尼器系统, 分析动车组运行过程中钩缓装置对相邻车辆作用的动力学机理, 明确作用方式, 建立高速动车组的强耦合模型. 根据列车模型动力或制动力输入的分散特征, 设计分布式神经网络滑模控制策略, 对高速动车组进行速度跟踪控制. 为减小速度跟踪过程中未知因素对高速动车组控制精度的影响, 利用列车历史运行数据, 采用历史工况数据中心对当前控制律输出进行补偿以提高控制精度与实用稳定性. 采用高速动车组运行仿真平台的仿真实验结果表明, 该建模方法较以往多质点模型更能体现高速动车组运行特性, 且采用补偿规则的控制策略优于传统控制效果.  相似文献   

18.
This paper presents the results of a lateral control strategy that has been applied to the problem of steering an autonomous vehicle using vision. The lateral control law has been designed for any kind of vehicle presenting the Ackerman kinematic model, accounting for the vehicle velocity as a crucial parameter for adapting the steering control response. This makes the control strategy suitable for either low or high speed vehicles. The stability of the control law has been analytically proved, and experimentally tested by autonomously steering Babieca, a Citro n Berlingo prototype vehicle.  相似文献   

19.
汽车转向/防抱死制动协同控制   总被引:1,自引:0,他引:1  
李果  刘华伟  王旭 《控制理论与应用》2010,27(12):1699-1704
为了解决汽车转向过程中防抱死制动稳定性问题,提出一种新的协同控制系统.该协同控制结构由转向控制器和制动控制器组成.在转向控制中设计滑模鲁棒自适应控制器和横摆力矩控制器力求改善汽车动态响应,鲁棒自适应性和稳定性.此外定义协同误差,建立汽车协同误差模型并设计汽车防抱死制动鲁棒自适应控制系统.为了减少转向系统和制动系统之间的补偿控制律难以确定的困难,提出耦合误差补偿原理与同一给定控制相结合的新的耦合控制策略.最后用仿真结果验证所设计控制算法的有效性.  相似文献   

20.
基于一致性的小型四旋翼机群自主编队分布式运动规划   总被引:1,自引:0,他引:1  
设计一种小型四旋翼无人机群起飞后自主形成正多边形编队的分布式运动规划方法.在四旋翼无人机的串级控制系统框架下,分布式编队控制器以简化agent模型为基础,同时采用平均一致性算法和有领导一致性算法,共同产生各无人机位置与偏航角的期望轨迹.讨论了达成最终协调目标队形的拓扑条件,并给出一种基于有向Hamilton环的通信拓扑设计方案.最后通过数值仿真验证了所提出算法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号