首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A financial analysis of cooking energy options is attempted for India using data from a field study and real costs and prices. The fuels considered are; fuelwood, kerosene, biogas, liquid petroleum gas (LPG) and electricity. Traditional and efficient devices and different discount rates are used in the analysis. Financial analysis for rural areas shows that the efficient Astra-stove using wood is the least cost option and biogas, which is the only quality fuel option for rural areas, is the most expensive option. The subsidised kerosene option is cheaper than wood in the traditional stove. The ranking of options from low to high costs is from fuelwood to kerosene to LPG to biogas. In the urban situation, the subsidy on kerosene distorts the energy ladder. Kerosene is the low cost fuel option, and fuelwood in the traditional stove is among the most expensive options. The existing subsidies on kerosene, LPG and electricity seem to benefit middle and high income groups, particularly in urban areas. Low income households in urban and rural areas are forced to use fuelwood in traditional stoves, which is not only a low quality fuel but is also a high cost cooking energy option. The efficiency of the device is shown to be a crucial factor in determining the cost of using a fuel. Low income households are disadvantaged, as they use traditional low efficiency wood stoves. A need to alter energy policies to promote quality fuels and efficient devices in an accessible way to low income households is highlighted.  相似文献   

2.
The optimal allocation of energy resources to various energy end uses is an important strategy for bridging the energy supply and demand gap in India. It has been recognized that the allocation should be guided by multiple criteria. A multiobjective programming model for such an allocation process is presented in the paper. The normative model has been applied for the households sector of Madras city. The model is solved using non pre-emptive goal programming. Variations in the original model have been made to build alternative scenarios. The results of the original model and the alternative scenarios indicate that the use of solar thermal energy, natural gas, LPG, fuelwood, kerosene and lignite should be promoted for cooking, and the use of grid electricity and diesel, should be promoted for meeting water pumping demands. They favour the use of electricity generated from diesel for lighting, and the use of solar photovoltaics for meeting the electricity demands of household appliances. The results also indicate that grid electricity and electricity generated from fuelwood should be promoted to meet the demands of all the four household end uses, and point to the need for more research into solar photovoltaics, which may become competitive for meeting household demands in the future.  相似文献   

3.
The aim of this paper is to analyze the role of renewable energy technologies (RETs) such as biogas, improved cooking stoves (ICSs), micro hydro (MH) and solar power (SP) in helping rural communities in Nepal to adapt to climate change. The analysis considers the energy efficiency of different RETs as well as their socio-economic and environmental impacts. The efficient use of biomass in new technology, such as biogas and ICSs for cooking, has increased energy security and reduced the negative effects of traditional biomass usage. MH and SP systems are replacing candles and kerosene lamps, and are the most promising RET models for electricity generation in rural Nepal. The improved illumination from these technologies also produces better education, health, environments, and social harmony in rural communities. This study uses the Long-range Energy Alternatives Planning model (LEAP) model to develop a plan for long-term RETs use in Nepal, and specifically focuses on household energy use in rural areas. It assesses the role of biogas and ICSs in rural communities and climate change adaptation in Nepal, along with the potential role of MH and SP technologies. According to the LEAP analysis, the planned implementation of MH for 20-year long-term will result in the reduction of 2.553 million tons of CO2 emissions. Similarly SP, biogas, and ICSs will result in a reduction in CO2 emissions of 5.214 million tons, 35.880 million tons, and 7.452 million tons, respectively.  相似文献   

4.
This paper has analyzed the case of Moushuni Island at Sundarban of 24 Parganas South of West Bengal, India. The proposition is to find out the possibility of grid-connectivity of Isolated Remote Island which is under rural electrification scheme by hybrid renewable energies under Jawaharlal Nehru National Solar Mission of India. In these rural electrification program, grid extension can be the best option if the grid is reliable, the rural community rather big and in proximity to the grid. In many circumstances, a strong case for mini-grids based on hybrid systems can be made. Scattered communities and isolated houses are well served by solar and small hydro (where available) or small wind energy systems. By feeding renewable electricity to the utility grid through the grid-connected hybrid renewable energy system, during time of peak demand, sufficient electrical loads can be shed to prevent turning on a coal or natural gas-fired plant and therefore save CO2 emissions and potentially energy import costs, replacing fossil fuels. The Social, Economic, and Environmental Benefits can be achieved through this proposition. Also, the Grid Interactive Operation of SPV System at Moushuni Island is tested. Malda district of West Bengal, India is a vision towards smart-grid city towards sustainable future, where rural consumers can upgrade their quality of life through solar energy resource.  相似文献   

5.
6.
Solar cooking is often considered “a solution looking for a problem”. Solar cookers have long been presented as an interesting solution to the world's problem of dwindling fuel wood sources and other environmental problems associated with wood fuel demand for cooking. However, recent GTZ field work in South Africa showed different benefits instead: the use of solar cookers resulted in appreciable fuel and time savings as well as increased energy security for households using commercial fuels. These observations are based on field tests in South Africa that started in 1996 to investigate the social acceptability of solar cookers and to facilitate local production and commercialisation of the technology. Impact studies and use rate studies have been carried out by a number of different organisations since the inception of the project and although commercialisation of the technology has not been achieved to its fullest potential, impact studies indicate that solar cookers have a positive development impact on households through fuel-, energy- and time savings. The article aims to summarise the findings of the various studies and present an overview of use rates and impact data. A variety of factors influence solar cooker use rates, which in turn determine impacts. Some factors are related to the user, some to the environment in which the cooker is used and some to the cooker itself. Ultimately, the data shows that on average, only 17% of solar cooker owners do not use their stoves after purchase and that active solar cooker users utilise their stoves on average for 31% of their cooking incidences. Since the majority of solar stove buyers actually use their stoves and obtain real benefits, this suggests that that solar cookers are indeed not a solution looking for a problem but a solution worth promoting.  相似文献   

7.
The two major energy challenges for the United States are replacing crude oil in our transportation system and eliminating greenhouse gas emissions. A domestic-source greenhouse-gas-neutral nuclear hydrogen biomass system to replace oil in the transportation sector is described. Some parts of the transportation system can be electrified with electricity supplied by nuclear energy sources that do not emit significant quantities of greenhouse gases. Other components of the transportation system require liquid fuels. Biomass can be converted to greenhouse-gas-neutral liquid fuels; however, the conversion of biomass-to-liquid fuels is energy intensive. There is insufficient biomass to meet U.S. liquid fuel demands and provide the energy required to process the biomass-to-liquid fuels. With the use of nuclear energy to provide heat, electricity, and hydrogen for the processing of biomass-to-liquid fuels, the liquid fuel production per unit of biomass is dramatically increased, and the available biomass could meet U.S. liquid fuel requirements.  相似文献   

8.
The unsustainable use of fossil fuels has led to increased awareness and widespread research on the accessibility of renewable energy resources such as biogas. Biogas is a methane rich gas that is produced by anaerobic fermentation of organic material. Despite its potential to replace biomass in Africa, where over 70% of the households use wood fuel and agricultural waste for cooking, biogas technology has not been adopted by Sub-Saharan African countries compared to their Asian counterparts. This paper examines the socioeconomic constraints to adoption of biogas in Sub-Saharan Africa and explores factors that could enhance adoption of the technology. These include standardization and quality control, as well as an approach of integrated farming using biogas and slurry. The article recommends mobilization of local and external funds to promote biogas, use of ready to use funds such as the Clean Development Mechanisms in overcoming the initial construction costs of biogas units, and formation of user and disseminator associations to reduce costs by joint procurement and linkage to finance. It further advocates the promotion of multiple uses of biogas for purposes other than cooking and lighting. It is expected that widespread adoption of the technology could lead to self-sufficiency in household energy provision for cooking. This would facilitate environmental management and economic development in Sub-Saharan Africa.  相似文献   

9.
The Chinese government has implemented the rural centralized residence (RCR) policy to promote rural development in 24 provinces since 2005. This study aims to estimate the effects of RCR on households' choice of clean cooking fuels by applying the instrumental variable approach on a dataset with 3685 observations in Sichuan Province. The empirical analysis showed that RCR has a significant positive effect on the choice of clean cooking fuels. We also found that RCR makes farmer households shift from using non-clean energy to clean energy for cooking by increasing both their total income and the cost of collecting and storing traditional fuels. Peer effects also motivate households to use clean cooking fuels. Further analysis indicates that an increase in the expenditure on clean energy due to RCR does not increase the farmer households' living burden, since the increase in the total income caused by RCR is much greater. Considering the accessibility and affordability of clean energy, the RCR policy could improve the standards of living among rural residents and synergistically promote energy transition in rural China.  相似文献   

10.
There have been few detailed assessments of the actual impacts of improved stove interventions in rural communities, although many improved stove projects have reported overall efficiencies from tests in simulated kitchens using water-boiling tests (WBTs). This paper presents an integrated energy evaluation of the Patsari cookstove, an efficient wood-burning cookstove developed in Mexico that has recently obtained international recognition, in comparison to traditional cookstoves in rural communities of Michoacan, Mexico. The evaluation uses three standard protocols: the WBT, which quantifies thermal efficiency and firepower; the controlled cooking test (CCT), which measures specific energy consumption associated with local cooking tasks, and the kitchen performance test (KPT), which evaluates the behavior of the stoves in-field conditions and estimates fuel savings. The results showed that the WBT gave little indication of the overall performance of the stove in rural communities. Field testing in rural communities is of critical importance, therefore, in estimating the benefits of improved stoves. In the CCT for tortilla making, the main cooking task in Mexican rural households, Patsari stoves showed fuelwood savings ranging from 44% to 65% in relation to traditional open fires (n=6; P<0.05). These savings were similar in magnitude to the average energy savings from KPT before and after Patsari adoption of 67% (n=23; P<0.05) in rural households exclusively using fuelwood. Similar energy savings of 66% for fuelwood and 64% for LPG, respectively, were also observed in households using mixed fuels. With sound technical design, critical input from local users and proper dissemination strategies, therefore, improved stoves can significantly contribute to improvements in the quality of life of rural people with potential benefits to the surrounding environment.  相似文献   

11.
Appropriate technology for energy supply requires the use of the most effective energy resources and conversion technologies that will also result in the minimum acceptable impact upon the environment. A useful parameter for evaluation of energy resources for large-scale production of electricity and hydrogen fuel is the specific energy of the appropriate energy resources. Available resources for such large-scale applications must come from some mixture of renewable, fossil, and nuclear energy. Analysis is made of the appropriate use of solar energy, chemical combustion fuels, and nuclear energy on the basis of their specific energy. The results show that the most appropriate resources for large-scale production of electricity and hydrogen are low-specific solar photovoltaic and wind turbine energy for large numbers of distributed small-scale applications and high-specific nuclear energy for smaller numbers of large-scale applications.  相似文献   

12.
Energy is one of the most important ingredients required to alleviate poverty and realize socio-economic and human development, which is directly interconnected to the prominence of life in rural areas. An extensive survey on household energy consumption pattern interrelating socio-economic and demographic factors was carried out in the disregarded villages of Bangladesh using stratified random sampling technique of 120 households. This paper focuses on household energy consumption, various combinations of fuels and their expenditure in the study area. Biomass, kerosene, electricity, LPG and candle were found as the energy carrier used in the rural households in this study. The study shows that 92% households use biomass, 28% LPG, 89% kerosene, 78% electricity and 27% candle as fuel types. It was found that 56% households collected biomass from their own homesteads and/or agricultural lands. Bamboo, branches, cow dung, firewood, rice husk, leaves & twigs and straw were found as the biomass for household energy use. Average monthly household expenditure for total energy was US$ 9.67 (SE, 0.31) per month while the total monthly income of the household was US$ 123 (SE, 2.53). The ratio of the total monthly energy expenditure to the total monthly income was 7.86%. The study will be helpful to understand the energy consumption system and its expenditure in the rural areas of Bangladesh and to the policy formulation for energy production, consumption and utilization.  相似文献   

13.
Depleting fossil fuels and the pollution resulting from their consumption indicate an urgent need for clean and dependable alternatives such as renewable energies. Biomass is a free and abundant source of renewable energy. Municipal solid waste (MSW) as one of the main categories of biomass has always been an issue for metropolitan cities. It has, however, a high potential for biogas production. In this study, the technical and economic aspects of generating electrical power through solid oxide fuel cells (SOFCs) powered by injecting biogas derived from Tehran's MSW, as a case study, are investigated. The main objectives of the current study are to identify the power generation capability of the process and find out if it can result in a competitive energy resource. The total amount of obtainable methane through anaerobic digestion of MSW and then the achievable power generation capacity by using the obtained biogas are computed using the electrochemical relations inside the SOFC. The economic calculations are carried out to estimate the final price of the generated electricity, taking into account the major capital and ongoing costs of the required equipment. The effect of variations of MSW composition on the power generation capability and final electricity price is also studied. Moreover, the application of a gas turbine (GT) with the SOFC as a hybrid SOFC–GT system to recover the produced heat by SOFC and its effect on the power generation capability and the final electricity price are investigated. Results indicate that around 997.3 tons day?1 biomethane can be generated using Tehran's MSW. By using the SOFC, the produced biogas can generate 300 MWAC electrical power with a final cost of Depleting fossil fuels and the pollution resulting from their consumption indicate an urgent need for clean and dependable alternatives such as renewable energies. Biomass is a free and abundant source of renewable energy. Municipal solid waste (MSW) as one of the main categories of biomass has always been an issue for metropolitan cities. It has, however, a high potential for biogas production. In this study, the technical and economic aspects of generating electrical power through solid oxide fuel cells (SOFCs) powered by injecting biogas derived from Tehran's MSW, as a case study, are investigated. The main objectives of the current study are to identify the power generation capability of the process and find out if it can result in a competitive energy resource. The total amount of obtainable methane through anaerobic digestion of MSW and then the achievable power generation capacity by using the obtained biogas are computed using the electrochemical relations inside the SOFC. The economic calculations are carried out to estimate the final price of the generated electricity, taking into account the major capital and ongoing costs of the required equipment. The effect of variations of MSW composition on the power generation capability and final electricity price is also studied. Moreover, the application of a gas turbine (GT) with the SOFC as a hybrid SOFC–GT system to recover the produced heat by SOFC and its effect on the power generation capability and the final electricity price are investigated. Results indicate that around 997.3 tons day?1 biomethane can be generated using Tehran's MSW. By using the SOFC, the produced biogas can generate 300 MWAC electrical power with a final cost of $0.178 kWh?1. By using the hybrid SOFC–GT, the electrical power capacity is increased to 525 MWAC, and the final electricity cost drops to $0.11 kWh?1, which indicates its competitiveness with other common energy resources in the near future, especially by considering different governmental subsidy policies that support renewable energy resources. The considerable environmental benefits of the proposed procedure, from both MSW management and CO2 emission reduction points of view, make it a promising sustainable energy resource for the future. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
提出了沼气、太阳能生态海岛模型.利用太阳池淡化海水,为官兵提供饮用水,在太阳池底铺设换热器,为官兵提供生活用热水,并对沼气池进行加热.利用海岛官兵的生活废弃物生产的沼气进行炊事,大约可以满足51%左右的炊事用能需求.  相似文献   

15.
分布式风-光互补能源利用系统   总被引:2,自引:0,他引:2  
提出充分利用风能和太阳能的互补性,设计了风能和太阳能联合供能系统在运行中能量产生、储备、利用等各个环节的工作方式,实现可靠、高效地运行,为用户提供了生活用电与供热。该系统很好地利用了风-光可再生资源在季节、天气、地域上的互补性,可拓展风能和太阳能经济利用的范围。该系统在风-光丰富的广大农村地区具有很好的应用和发展前景。  相似文献   

16.
Surveys have been conducted in 200 households in and around Pondicherry, in 45 households of each of two rural and two semi-urban areas, and in 20 households in an urban area. The families surveyed cover the Economically Weaker Section, the Low Income Group, the Middle Income Group, and the High Income Group; there were 60 families in each of the first three categories in rural and semi-urban areas and 20 of the fourth category in the urban area. The objective of this empirical study was to determine the daily household energy consumption for cooking, lighting, heating water, and for household electrical appliances.

The average energy content of the commercial and non-commercial fuels used for cooking, heating water and lighting has been determined on a per capita daily basis. The seasonal and hourly variations have also been determined for cooking and lighting loads. The baseline data, which give the caloric values and costs for various kinds of fuels are presented in the Appendix. This survey contains previously unavailable data on village level domestic energy needs, their magnitudes and diurnal profiles.  相似文献   


17.
The extensive utilization of biogas for energy needs of rural dwellers would reduce their dependence on fossil fuels and fuelwoods and henoe camplement Government afforestation programes. In this investigation, effect of temperature and retention period on biogas production from lignooellulosic material, hereafter referred to as cow dung were studied. Maximum gas production was dotained at thermophilic temperature. The results of the effect of retention period shows that gas production was qotimum at 4th and 7th weeks of production.  相似文献   

18.
The deployment of biogas energy as alternative energy source can have the potential to fill the gap in the energy needs of the rural community if it is effectively managed and appropriately utilized. Using a logistic regression analysis of cross sectional data, the driving forces for adoption decision of biogas technology by rural households in the Tigray region, Ethiopia, were examined. The study found that the factors that significantly affect biogas adoption decision of rural households were for the most part socio-demographic factors and access to basic infrastructures. Besides, some environmental, institutional and economic attributes were significantly associated with diffusion of biogas technology. From among the variables included in the model, age of household head, family size, level of education, cattle size owned, distance to firewood collection site, access to electricity, access to credit and access to all weather roads were found to positively affect biogas adoption decision of households. On the other hand, distance to the nearest market negatively affected the adoption decision of the households. Female headed households tend more to adopt the biogas technology as compared to their male counterparts. As socio-economic attributes of households and environmental factors are mostly varied contextually and spatially, the policy of biogas technology promotion should be tailored based on the principle of fit for the purpose instead of the existing unimodal approach for all settings.  相似文献   

19.
This paper focuses on a Life Cycle Assessment (LCA) of four waste management strategies: landfill without biogas utilization; landfill with biogas combustion to generate electricity; sorting plant which splits the inorganic waste fraction (used to produce electricity via Refuse Derived Fuels, RDF) from the organic waste fraction (used to produce biogas via anaerobic digestion); direct incineration of waste. These scenarios are applied to the waste amount and composition of the Municipality of Roma (Italy) and are evaluated under different points of view: global and local emissions, total material demands, total energy requirements and ecological footprints. Results, reliable for most of the European big cities, show landfill systems as the worst waste management options and significant environmental savings at global scale are achieved from undertaking energy recycling. Furthermore, waste treatments finalized to energy recovery provide an energy output that, in the best case, is able to meet the 15% of Roma electricity consumption.  相似文献   

20.
Concentrating Solar Power (CSP) plants typically incorporate one or various auxiliary boilers operating in parallel to the solar field to facilitate start up operations, provide system stability, avoid freezing of heat transfer fluid (HTF) and increase generation capacity. The environmental performance of these plants is highly influenced by the energy input and the type of auxiliary fuel, which in most cases is natural gas (NG). Replacing the NG with biogas or biomethane (BM) in commercial CSP installations is being considered as a means to produce electricity that is fully renewable and free from fossil inputs. Despite their renewable nature, the use of these biofuels also generates environmental impacts that need to be adequately identified and quantified. This paper investigates the environmental performance of a commercial wet-cooled parabolic trough 50 MWe CSP plant in Spain operating according to two strategies: solar-only, with minimum technically viable energy non-solar contribution; and hybrid operation, where 12% of the electricity derives from auxiliary fuels (as permitted by Spanish legislation). The analysis was based on standard Life Cycle Assessment (LCA) methodology (ISO 14040-14040). The technical viability and the environmental profile of operating the CSP plant with different auxiliary fuels was evaluated, including: NG; biogas from an adjacent plant; and BM withdrawn from the gas network. The effect of using different substrates (biowaste, sewage sludge, grass and a mix of biowaste with animal manure) for the production of the biofuels was also investigated. The results showed that NG is responsible for most of the environmental damage associated with the operation of the plant in hybrid mode. Replacing NG with biogas resulted in a significant improvement of the environmental performance of the installation, primarily due to reduced impact in the following categories: natural land transformation, depletion of fossil resources, and climate change. However, despite the renewable nature of the biofuels, other environmental categories like human toxicity, eutrophication, acidification and marine ecotoxicity scored higher when using biogas and BM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号