首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal expansion and conductivities have been investigated for Co3+ doped lanthanum silicates. The apatite-type lanthanum silicates with formula La10Si6?xCoxO27?x/2 (x = 0.2, 0.4, 0.6, 0.8, 1.0, 1.5) were synthesized by sol–gel process. The thermal expansion coefficient (TEC) of La10Si6?xCoxO27?x/2 was improved with increasing cobalt content because of the lower valence and larger radius of Co3+ ion compared to Si4+. Analysis of AC impedance spectroscopy showed that conductivity increased first and then decreased with increasing cobalt content. There is an optimum doping amount of cobalt and La10Si5.2Co0.8O26.6 exhibits the highest conductivity of 3.33 × 10?2 S/cm at 800 °C. When x  0.8, the local distortion caused by doping with Co3+ can significantly affect the oxygen channels and assist the migration of the interstitial oxide ions, resulting in the improvement of ionic conductivity. However, excess Co3+ dopant (0.8 < x  1.5) reduced the number of interstitial oxide ions and decreased the conductivity.  相似文献   

2.
《Materials Letters》2005,59(19-20):2433-2436
The lithium solubility limit, photoluminescence (PL) and photoluminescence excitation (PLE) properties of lithium ion co-activated ZnGa2O4:Bi3+,Li+ phosphor have been investigated. A LiGaO2 second phase began to appear from 3 mol% Li+ ion co-activated ZnGa2O4:Bi3+,Li+ phosphor. The enhanced brightness of blue (λex = 254 nm) and white (λex = 315 nm) colors of bismuth ions doped ZnGa2O4:Bi3+,Li+ phosphor was assigned to the formation of LiGaO2. Bi3+ activated lithium zinc gallate phosphor showed a more enhanced PLE peak around 315 nm than that of lithium zinc gallate phosphor when λem = 520 nm. Thus, we observed that the PL intensity of ZnGa2O4:Bi3+,Li+ phosphor with λem = 520 nm was much greater than that of ZnGa2O4:Li+ phosphor. Also, ZnGa2O4:Bi3+,Li+ phosphor exhibited a shorter decay time than that of ZnGa2O4:Li+ phosphor by about a factor of about 2.  相似文献   

3.
Cr doped 0.3Li2MnO3·0.7LiMn0.35−x/3Ni0.5−x/3Co0.15−x/3CrxO2 (x = 0, 0.02, 0.04, 0.06) as a cathode material for Li-ion battery has been successfully synthesized by spray drying and subsequent calcination. The effects of Cr dopant on the structural and electrochemical properties of this material have been investigated by XRD, SEM, EDS, charge–discharge measurements, Ac impedance spectroscopy as well as cyclic voltammetry. These results demonstrated that the element Cr distributed uniformly in these materials. With the Cr content increasing, lattice parameters a and c decrease and less Li ion locates in transition metal site. Among the synthesized Cr-doped materials, when x = 0.04, this material shows the best electrochemical properties. Between 2.5 and 4.8 V (vs. Li/Li+), the initial discharge capacities of the materials increased from 143 to 168 mA h g−1 at a constant current density of 250 mA g−1. After 50 cycles, the capacity retention of the materials raised from 83% to 93%.  相似文献   

4.
Low thermal conductivity is one of the key requirements for thermal barrier coating materials. From the consideration of crystal structure and ion radius, La3 + Doped Yb2Sn2O7 ceramics with pyrochlore crystal structures were synthesized by sol–gel method as candidates of thermal barrier materials in aero-engines. As La3 + and Yb3 + ions have the largest radius difference in lanthanoid group, La3 + ions were expected to produce significant disorders by replacing Yb3 + ions in cation layers of Yb2Sn2O7. Both experimental and computational phase analyses were carried out, and good agreement had been obtained. The lattice constants of solid solution (LaxYb1  x)2Sn2O7 (x = 0.3, 0.5, 0.7) increased linearly when the content of La3 + was increased. The thermal properties (thermal conductivity and coefficients of thermal expansion) of the synthesized materials had been compared with traditional 8 wt.% yttria stabilized zirconia (8YSZ) and La2Zr2O7 (LZ). It was found that La3 + Doped Yb2Sn2O7 exhibited lower thermal conductivities than un-doped stannates. Amongst all compositions studied, (La0.5Yb0.5)2Sn2O7 exhibited the lowest thermal conductivity (0.851 W·m 1·K 1 at room temperature), which was much lower than that of 8YSZ (1.353 W·m 1·K 1), and possessed a high coefficient of thermal expansion (CTE), 13.530 × 10 6 K 1 at 950 °C.  相似文献   

5.
A new ternary compound, Mg15  xZnxSr3 with extensive solid solubility in the Mg–Zn–Sr system was observed and studied using electron probe microanalysis (EPMA), scanning electron microscopy SEM, and X-ray techniques. The solid solubility limits of this compound were found to be Mg15  xZnxSr3 (0.24  x  10.58, at.%) at 300 °C using a diffusion couple and several equilibrated alloys. Analysis of the X-ray diffraction (XRD) patterns was carried out by Rietveld method. XRD data has shown that this solid solution crystallizes in the hexagonal P63/mmc (194) space group with the Ni11Si4Sc3 prototype. The lattice parameters decrease linearly with decreasing Mg content indicating substitutional solid solubility. The fractional atomic occupancy of the 6h, 6g, 4f, 2b and 12k sites of this compound are function of Mg content.  相似文献   

6.
《Materials Research Bulletin》2013,48(11):4884-4888
Ca3Co4–xCuxO9 + δ (x = 0.00, 0.05, 0.07, 0.10 and 0.15) samples were prepared by conventional solid-state synthesis and their thermoelectric properties were systematically investigated. The thermopower of all the samples was positive, indicating that the predominant carriers are holes over the entire temperature range. Ca3Co3.85Cu0.15O9 + δ had the highest power factor of 2.17 μW cm−1 K−2 at 141 K, representing an improvement of about 64.4% compared to undoped Ca3Co4O9 + δ. Magnetization measurements indicated that all the samples exhibit a low-spin state of cobalt ions. The observed effective magnetic moments decreased with increasing copper content.  相似文献   

7.
《Materials Letters》2007,61(11-12):2359-2361
The magnetic phase transition and magnetocaloric effect of the alloys of Gd0.74Tb0.26 and (Gd0.74Tb0.26)5(SixGe1−x)4 (x = 0.43, 0.50, 0.505) have been investigated by magnetization measurement. Experimental results show that partial substitution of the Gd by Tb in Gd5(SixGe1−x)4 system keeps the first order magnetic transition. Although the values of transition temperature decrease, the as-cast (Gd0.74Tb0.26)5(Si0.43Ge0.57)4 and annealed (Gd0.74Tb0.26)5(Si0.50Ge0.50)4 alloys display large magnetic entropy change up to 18.89 J kg 1 K 1 and 13.79 J kg 1 K 1 near their transition temperatures in the low magnetic field change of 0–2.0 T, respectively.  相似文献   

8.
Li4Ti5O12 and Ru-doped Li4Ti5O12 with the formulation of Li4Ti4.99Ru0.01O12 were prepared by a modified solid-state method. The structure and electrochemical properties of the as-prepared powders were systematically investigated. Li4Ti4.99Ru0.01O12 exhibited an excellent rate capability with a discharge capacity of 146 mAhg? 1 at 1 C, 126 mAhg? 1 at 5 C, 119 mAhg? 1 at 10 C and even 107 mAhg? 1 at 20 C. Electrochemical impedance spectra (EIS) reveal that the Li4Ti4.99Ru0.01O12 exhibited the improved electronic conductivity and higher lithium-ion diffusivity than that of Li4Ti5O12. The novel Li4Ti4.99Ru0.01O12 material stands as a promising potentially high rate anode material for the lithium ion batteries.  相似文献   

9.
Eu3+ ions incorporated Li–K–Zn fluorotellurite glasses, (70  x)TeO2 + 10Li2O + 10K2O + 10ZnF2 + xEu2O3, (0  x  2 mol%) were prepared via melt quenching technique. Optical absorption from 7F0 and 7F1 levels of the Eu3+-doped glass has been studied to examine the covalent bonding characteristics, energy band gap and Judd–Ofelt intensity parameters. The emission spectra (5D0  7F0,1,2,3,4) of the glasses were used to estimate the luminescence enhancement, asymmetric environment in the vicinity of Eu3+ ions, stimulated emission cross section and branching ratios. The phonon side band mechanism of 5D2 level of the Eu3+ ions in the prepared glass was examined by considering the excitation and Raman spectra. The radiative lifetime calculated using Judd–Ofelt parameters was compared with the experimental lifetime to estimate the quantum efficiency of 5D0 level of Eu3+ ions in Li–K–Zn fluorotellurite glass.  相似文献   

10.
Octadecasil, a clathrate-type inclusion compound, has been synthesized hydrothermally at 453 K with a gel having the composition 1.0SiO2:0.53tetramethylammonium (TMA+):0.54fluoride:86H2O. The crystal structure has been determined based on powder X-ray diffraction data taken at 298 K, and has been refined using Rietveld method. The result confirms the AST-type, all-silica framework model developed by Caullet et al. [P. Caullet, J.L. Guth, J. Hazm, J.M. Lamblin, H. Gies, Eur. J. Solid State Inorg. Chem. 28 (1991) 345]. Furthermore, by using a rigid body model the position and orientation of the occluded TMA+ cation in the rhombododecahedral [46612] cage can be determined; F anion has been located in the hexahedral [46] cage. The unit cell parameters, in the tetragonal space group I4/m, have been refined as: a = b = 9.07 Å, c = 13.44 Å, cell volume = 1104.97 Å3. The refined unit cell composition is |[N(CH3)4+]2.0F1.9|[Si20O40], i.e., both TMA+ and F ions possess near full occupancies, and compensate each other's electronic charges. The crystallization of the AST framework structure is the result of a cooperative structure-directing effect of both ions.  相似文献   

11.
Lithium-ion battery cathode material Li1+xV3O8 was synthesized by a tartaric acid assisted sol–gel method and thermally treated at 350 °C, 450 °C and 550 °C for 3 h for the formation of Li1+xV3O8 phase. The synthesized samples were fully characterized by FTIR, TG/DTA, XRD and charge–discharge tests. Li1+xV3O8 material synthesized by tartaric acid assisted route, followed by heat treatment at 450 °C for 3 h shows best electro-chemical performance. It shows a high initial capacity of 249 mAh g?1 and still reserves a discharge capacity of 260 mAh g?1 after 50 cycles. Moreover, for all tartaric assisted products, no capacity decadence is observed in 50 cycles. The in situ X-ray measurements reveal a two-phase transition mechanism in the lithium intercalation/deintercalation process. During lithium extraction, the structure of the delithiated compound changes from Li4V3O8 (x > 3.1) to the original LiV3O8 phase (x < 1.4) via the coexistence state of these two phases (1.4 < x < 3.2). An obvious contraction, especially at Li(3)–Li(4) transition, along a axis and a slight expansion along b axis are also observed.  相似文献   

12.
Li0.5Fe2.5−xCrxO4 (0  x  1.0) powders with small and uniformly sized particles were successfully synthesized by microwave-induced combustion, using lithium nitrate, iron nitrate, chromium nitrate, and carbohydrazide as the starting materials. The process takes only a few minutes to obtain as-received Cr-substituted lithium ferrite powders. The resultant powders annealed at 650 °C for 2 h and were investigated by thermogravimeter/differential thermal analyzer (TG/DTA), X-ray diffractometer (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and thermomagnetic analysis (TMA). The results revealed that the lattice constant decreases linearly with increasing of Cr content in Li0.5Fe2.5−xCrxO4 specimens. Moreover, the magnetic properties of Cr-substituted lithium ferrite were also strongly affected by Cr content. The saturation magnetization, remanent magnetization, and coercive force decrease monotonously with increasing of Cr content.  相似文献   

13.
The compound Bi4V2O11 has been tested as a positive electrode in room temperature electrochemical lithium cells. When the cells are discharged down to 0.5 V the reaction of Bi4V2O11 with 28 lithium ions develops a theoretical specific capacity of 700 A h kg−1. Hence, this compound could be used as cathode in primary lithium batteries. Besides, we consider the fact that in the low voltage region (1.3–0.5 V) Li28Bi4V2O11 develops about 360 A h kg−1 at 0.7 V, and, therefore, this material is proposed as a negative electrode in lithium ion batteries. The mechanism of the reaction of Bi4V2O11 with 28 lithium ions is not yet fully understood, although some guidelines can be given.  相似文献   

14.
Flame spray pyrolysis, which produces ultrafine particles, was applied to the synthesis of Ce1−xGdxO2−x/2 solid solutions by substituting Gd from a mole fraction of 0–0.40. The solubility limit of Gd in the Ce1−xGdxO2−x/2 solid solution produced by flame spray pyrolysis was between 0.25 and 0.30, which is consistent with the reported value. The as-prepared Ce1−xGdxO2−x/2 particles had a square morphology and a nanometer range in the equivalent diameter. The small particle size made it possible to reduce the sintering temperature of the Ce1−xGdxO2−x/2 solid solution from 1650 °C to 1400 °C for the ceria-based solid electrolytes produced by the solid state preparation. The maximum ionic conductivity was achieved when the mole fraction of Gd was 0.25. The mole fraction for the highest ionic conductivity was the same as the particles produced by hydrothermal synthesis. However, the ionic conductivity of the Ce1−xGdxO2−x/2 prepared by the flame spray pyrolysis (1.01 × 10−2 S/cm at 600 °C) was higher than that prepared by the hydrothermal synthesis (7.53 × 10−3 S/cm at 600 °C).  相似文献   

15.
《Materials Research Bulletin》2013,48(11):4618-4627
Multi-component glasses of the chemical composition 19.5Li2O–20PbO–20B2O3–30SiO–(10  x)Bi2O3–0.5MnO:xGa2O3 with 0  x  5.0 have been synthesized. Spectroscopic (optical absorption, IR, Raman and ESR) and dielectric properties were investigated. Optical absorption and ESR spectral studies have indicated that managanese ions do exist in Mn3+ state in addition to Mn2+ state in the samples containing low concentration of Ga2O3. The IR and Raman studies indicated increasing degree of disorder in the glass network with the concentration of Ga2O3 up to 3.0 mol%. The dielectric constant, loss and ac conductivity are observed to increase with the concentration of Ga2O3 up to 3.0 mol%. The quantitative analysis of the results of dielectric properties has indicated an increase in the insulating strength of the glasses as the concentration of Ga2O3 is raised beyond 3.0 mol%. This has been attributed to adaption of gallium ions from octahedral to tetrahedral coordination.  相似文献   

16.
M. Kundu  S. Mahanty  R.N. Basu 《Materials Letters》2011,65(19-20):3083-3085
Nanocrystalline Li4Ti5O12/Li3SbO4/C composite-prepared by mechanical ball-milling of Li4Ti5O12 (synthesized by aqueous combustion), Li3SbO4 (synthesized by solid state method) and activated carbon, has been investigated as anode in lithium-ion coin cells and compared to pristine Li4Ti5O12. Galvanostatic charge–discharge measurements in the potential window of 0.05–2.0 V show three plateau regions corresponding to Li insertion/extraction in the composite: a large flat plateau at ~ 1.52/1.59 V, followed by a second plateau at ~ 0.75/1.1 V and a sloppy tail at ~ 0.4/0.6 V. While the plateaus at ~ 0.4/0.6 V and ~ 1.52/1.59 V correspond to Li4Ti5O12, the other one at ~ 0.75/1.1 V corresponds to Li3SbO4. At a high rate of ~ 15 C, the capacity for Li4Ti5O12/Li3SbO4/C composite is found to be 105 mAhg?1 retaining ~ 78% of its initial capacity compared to only 58 mAhg?1 (~ 27% of the initial capacity) at 14 C for pristine Li4Ti5O12 up to 100 cycles. Thus, such composite material might find application in lithium-ion batteries requiring high rate of charge and discharge.  相似文献   

17.
Co2+ and Ni2+ ions doped 20ZnO + xLi2O + (30 ? x) K2O + 50B2O3 (5  x  25) mol% glasses are prepared using melt quenching technique. Structural changes of the prepared glasses by addition of transition metal oxides, CoO and NiO are investigated by UV–vis–NIR, FT-IR spectroscopy and XRD. The XRD pattern indicates the amorphous nature of prepared glasses. FT-IR measurements of the all glasses revealed that the network structure of the glasses are mainly based on BO3 and BO4 units placed in different structural groups in which the BO3 units being dominant. The optical absorption spectra suggest the site symmetry of Co2+ and Ni2+ ions in the glasses are near octahedral. Crystal field and inter-electronic repulsion parameters are also evaluated. The optical band gap and Urbach energies exhibited the mixed alkali effect. Various physical parameters such as density, refractive index, optical dielectric constant, polaron radius, electronic polarizability and inter-ionic distance are also determined.  相似文献   

18.
In this study, (100 ? x) K0.48Na0.48Li0.04Nb0.96Ta0.04O3 ? xSrTiO3 (0  x  10) ceramics were fabricated via normal sintering of synthesized powder by using solid state reaction. All ceramics revealed pure perovskite structure, indicating formation of solid solution between KNNLT and ST up to 10%. With increasing x, the crystal structure of ceramics changed from orthorhombic to tetragonal and finally pseudocubic symmetry when x = 10. Ceramic containing 1% ST had orthorhombic and tetragonal symmetries, simultaneously. Investigation of the variation of dielectric constant of ceramics versus temperature revealed that for ceramic with x = 1, polymorphic phase transition (PPT) temperature between orthorhombic and tetragonal is less than room temperature. Thus coexistence of two different structures in this ceramic is due to vicinity of its composition to morphotropic phase boundary (MPB). As a result, the maximum piezoelectric constant was measured for this ceramic. Ceramics containing 5 and 7.5% ST tend to appear relaxor ferroelectric behavior which is because of chemical inhomogeneities in both A- and B-sites of the ABO3 perovskite structure.  相似文献   

19.
《Materials Research Bulletin》2013,48(11):4924-4929
Compositions based on (1−x)Ca0.6Nd8/3TiO3x(Li1/2Nd1/2)TiO3 + yLi (CNLNTx + yLi, x = 0.30–0.60, y = 0–0.05), suitable for microwave applications have been developed by systematically adding excess lithium in order to tune the microwave dielectric properties and lower sintering temperature. Addition of 0.03 excess-Li simultaneously reduced the sintering temperature and improved the relative density of sintered CNLNTx ceramics. The excess Li addition can compensate the evaporation of Li during sintering process and decrease the secondary phase content. The CNLNTx (x = 0.45) ceramics with 0.03 Li excess sintered at 1190 °C have single phase orthorhombic perovskite structure, together with the optimum combination of microwave dielectric properties of ɛr = 129, Q × f = 3600 GHz, τf = 38 ppm/°C. Obviously, excess-Li addition can efficiently decrease the sintering temperature and improve the microwave dielectric properties. The high permittivity and relatively low sintering temperatures of lithium-excess Ca0.6Nd0.8/3TiO3/(Li0.5Nd0.5)TiO3 ceramics are ideal for the development of low cost ultra-small dielectric loaded antenna.  相似文献   

20.
《Materials Letters》2006,60(13-14):1603-1606
The phase structure and dielectric properties of (1  x)Pb(Zn1/3Ta2/3)O3xBaTiO3 (x = 0.00–0.40) ceramics were investigated. Pure perovskite is obtained when x  0.24. With increasing BT content, the diffuse phase transition and frequency dissipation of the dielectric constant increase and the dielectric maxima temperature decreases. It is related to the existing of Ba(Zn1/3Ta2/3)O3 paraelectric microregions and the incomplete solid solution reaction between Pb(Zn1/3Ta2/3)O3 and BaTiO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号