首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of Dy addition on the thermal stability, glass-forming ability (GFA), magnetic and mechanical properties of quaternary (Fe0.76−xDyxB0.24)96Nb4 (x = 0–0.07) bulk metallic glasses (BMGs) were investigated. Increasing Dy content from x = 0 to 0.05 extended the supercooled liquid region up to 112 K, allowing the fabrication by copper mold casting of BMGs rods with 5.5 mm in diameter. The high GFA was found to be related to the structure of primary crystalline phase. For the x = 0.05 alloy, the competitive formation process of the complex Fe23B6 and Dy2Fe14B phases enabled to obtain the largest GFA value. Moreover, the Fe–Dy–B–Nb BMGs exhibited good soft-magnetic properties, i.e., high saturation magnetization of 1.18–0.56 T and low coercive force of 1.9–21.6 A/m. In addition, the glassy alloy rods also showed high compressive fracture strengths of 4400–4150 MPa and high Vickers hardness of 1110–1090 kg/mm2.  相似文献   

2.
Thermally induced crystallization of Fe73.5Cu1Nb3Si15.5B7 amorphous alloy occurs in two well-separated stages: the first, around 475 °C, corresponds to formation of α-Fe(Si)/Fe3Si and Fe2B phases from the amorphous matrix, while the second, around 625 °C, corresponds to formation of Fe16Nb6Si7 and Fe2Si phases out of the already formed α-Fe(Si)/Fe3Si phase. Mössbauer spectroscopy suggests that the initial crystallization occurs through formation of several intermediate phases leading to the formation of stable α-Fe(Si)/Fe3Si and Fe2B phases, as well as formation of smaller amounts of Fe16Nb6Si7 phase. X-ray diffraction (XRD) and electron microscopy suggest that the presence of Cu and Nb, as well as relatively high Si content in the as-prepared alloy causes inhibition of crystal growth at annealing temperatures below 625 °C, meaning that coalescence of smaller crystalline grains is the principal mechanism of crystal growth at higher annealing temperatures. The second stage of crystallization, at higher temperatures, is characterized by appearance of Fe2Si phase and a significant increase in phase content of Fe16Nb6Si7 phase. Kinetic and thermodynamic parameters for individual steps of crystallization suggest that the steps which occur in the same temperature region share some similarities in mechanism. This is further supported by investigation of dimensionality of crystal growth of individual phases, using both Matusita–Sakka method of analysis of DSC data and texture analysis using XRD data.  相似文献   

3.
The influences of Cr addition on the Curie temperature (TC), glass-forming ability (GFA), and magnetocaloric effect were investigated in FeCrNbYB metallic glasses. It was found that the addition of Cr element slightly decreases the GFA and saturation magnetization, whereas effectively modulates TC. By the method of copper mold casting, bulk metallic glasses (BMGs) with critical diameters up to 5 mm can be obtained in Fe68−xCrxNb4Y6B22 (x = 2–6) alloys. The resulting metallic glasses exhibit TC of 271–367 K and excellent magnetocaloric properties, including magnetic entropy change of 0.76–1.05 J/kg K, and refrigerant capacity of 83–93 J/kg under a low field change of 1.5 T. In addition, they exhibit a wide supercooled liquid region of 116–135 K. The successful synthesis of the FeCrNbYB BMGs with near room-temperature magnetocaloric properties is encouraging for the future development of Fe-based BMGs as a new magnetic refrigerant in magnetic cooling system.  相似文献   

4.
Fe38Ni38Nb2.5B21.5−xyPxSiy (x, y = 1–8) bulk metallic glassy alloys with high glass forming ability and excellent magnetic properties were developed. Bulk samples with maximum diameters of 3 mm are fabricated by copper mold casting method. The glassy alloys have large ΔTx of 40–70 K. The alloys exhibit excellent magnetic properties like extremely low Hc of 0.5–0.8 A/m, high μe of 1.6–2.85 × 104 and comparatively high Bs of 0.6–0.8 T which changes regularly with the content variations of P, B and Si. By ascertaining applicability of the empirical GFA criterions, Trg, α, β and γ can be used in evaluating the GFA of FeNiBSiPNb system alloys.  相似文献   

5.
The effect of varying Cu content on the bulk glass forming ability (GFA) of (Fe0.36Co0.36B0.192Si0.048Nb0.04)100?XCuX alloys (X = 0, 0.5, 0.75 and 1.0) is revealed by investigating the thermal behaviors and phase competitions upon solidification. The changes in GFA are interpreted in terms of suppression of consecutive solidification reactions via microstructural and thermal features. Instead of the type of the primary crystallization product originating from the prevalent atomic order in the glass or supercooled liquid, precipitation of faceted binary and higher-order pro-eutectic compounds such as (Fe,Co)2B and (Fe,Co)NbB from the alloy melt and resulting skewed eutectic coupled zone are correlated with the observed GFA. With the employed centrifugal casting method, the (Fe0.36Co0.36B0.192Si0.048Nb0.04)99.25Cu0.75 alloy shows the largest critical thickness of 3 mm and the best soft magnetic properties such as 1.58 T saturation magnetization intensity and 11.7 A/m coercivity after annealing.  相似文献   

6.
Powder particles of Fe73.5Si13.5B9Nb3Cu1 and Fe97Si3 soft magnetic alloys have been prepared by gas atomization. The gas atomized powder was microstructurally characterized and the dependence of coercivity with the composition and powder particle size investigated. As-atomized powder particles of both compositions were constituted by a bcc α-Fe (Si) solid solution. The Fe73.5Si13.5B9Nb3Cu1 powder particles presented a grain microstructure with dendrite structure, which dendrite arms were enriched in Nb. The coercivity increased as the particle size decreased, with a minimum coercivity, of 5 Oe, measured in the Fe97Si3 alloy in the range of 50–100 μm powder particle size. The coercive fields were quite higher in the Fe73.5Si13.5B9Nb3Cu1 than in the Fe97Si3 powder, due to the Nb addition, which produced a phase segregation that leads to a noticeable magnetic hardening.  相似文献   

7.
Solute clustering and partitioning in new Fe–B-based soft magnetic materials with high saturation magnetic flux density (Bs), (Fe0.85B0.15)100?xCux (x = 0.0, 1.0, and 1.5) and Fe82.65Cu1.35SiyB16?y (y = 0.0, 2.0, and 5.0) melt-spun alloys, were investigated by three-dimensional atom probe and transmission electron microscopy. Although Cu clusters form after annealing in all the samples, it was found that only the clusters of 4–6 nm can serve as heterogeneous nucleation sites for α-Fe. While annealing the Si-free alloys at 410 °C led to the precipitation of Fe3B, only α-Fe nanocrystals were observed in the Si-containing alloys. Lorenz TEM observation indicated the Fe3B particles pin magnetic domain walls. The Fe82.65Cu1.35SiyB16?y alloy with y = 2.0 crystallized by annealing at 400 °C exhibited optimal nanocrsytal/amorphous microstructure without the precipitation of Fe3B, which led to the lowest coercivity while keeping a high Bs ~1.85 T.  相似文献   

8.
Fe-based metallic glasses of (Fe74Nb6B20)100-xCrx (x=1, 3, 5) with high glass forming ability (GFA) and good magnetic properties were prepared using low-purity raw materials. Increasing Cr content does not significantly change glass transition temperature and onset crystallization temperature, while it enhances liquidus temperature. The addition of Cr improves the GFA of the (Fe74Nb6B20)100-xCrx glassy alloys compared to that in Cr-free Fe-Nb-B alloys, in which the supercooled liquid region (ΔTx), Trg and γ are found to be 50–54 K, 0.526–0.538, and 0.367–0.371, respectively. The (Fe74Nb6B20)100–xCrx glassy alloys exhibit excellent soft magnetic properties with high saturation magnetization of 139–161 A·m2/kg and low coercivity of 30.24–58.9 A/m. Present Fe-Nb-B-Cr glassy alloys exhibiting high GFA as well as excellent magnetic properties and low manufacturing cost make them suitable for magnetic components for engineering application.  相似文献   

9.
The glass-forming ability (GFA) and soft-magnetic properties of (Co0.6Fe0.3Ni0.1)67B22+xSi6?xNb5 (x = 0–1.5) bulk glassy alloys was investigated. The DSC curves show that the (Co0.6Fe0.3Ni0.1)67B22+xSi6?xNb5 bulk glassy alloys have a wide supercooled liquid region (ΔTx) of about 60 K, and high reduced glass transition temperature (Tg/Tl) lies in the range from 0.628 to 0.649. By copper mold casting method, the bulk glassy alloys with diameters up to 4.5 mm can be formed. In addition to high GFA, the Co-based bulk glassy alloys also exhibit good soft-magnetic properties, i.e., saturation magnetization of 0.58–0.61 T, low coercive force of 0.83–1.46 A/m, and high permeability of (1.79–2.2) × 104 at 1 kHz under a field of 1 A/m. These Co-based bulk glassy alloys are promising for future applications as a new structural and functional material.  相似文献   

10.
The effects of Nb and C additions on the crystallization behavior, microstructure and magnetic properties of B-rich Nd9.4Fe79.6−xNbxB11−yCy (x = 0, 2, and 4; y = 0, 0.5, and 1.5) alloy ribbons have been investigated. The results show that Nb and C additions change the crystallization behavior of Nd9.4Fe79.6B11, avoid the formation of metastable Nd2Fe23B3 phase, leading to the simultaneously precipitation of α-Fe and Nd2Fe14B phases. The results also show that Nb and C additions suppress the formation and growth of the soft α-Fe phases, leading to the presence of a large amount of Nd2Fe14B phases. Nb and C additions also refine the structure, and thus increase the exchange coupling interaction between the soft and hard phases. Excellent magnetic properties of Br = 0.85 T, iHc = 1106 kA/m, and (BH)max = 117 kJ/m3 have been achieved in Nd9.4Fe75.6Nb4B10.5C0.5 alloy ribbons.  相似文献   

11.
Bulk magnetic Fe80−xCoxP13C7 (x = 0, 5, 10, 15, 20 at.%) glassy alloy rods were prepared by the combination method of fluxing treatment and J-quenching technique, and the attainable maximum diameter for fully glass formation gets to 2.5 mm for x = 5. The effects of Co substitution for Fe on the glass formation ability (GFA), thermal stability, mechanical properties and magnetic properties have been investigated systematically. It was found that the partially substitution of Co for Fe can enhance the GFA of Fe80P13C7 alloy, while excessive substitution will lead to the degradation of GFA. The compressive test shows that the substitution of Co for Fe results in the decease of fracture strength, and then significantly enhance the room temperature plastic strain of the present Fe-based BMGs, which can be identified that the plastic strain at room temperature gets to 2.5% and 3.0% for x = 5 and 10, respectively. The saturation magnetization of Fe80−xCoxP13C7 (x = 0, 5, 10, 15, 20 at.%) BMGs firstly increases from 1.477 T to 1.550 T with increasing Co content from x = 0 to 5, and then deceases from 1.549 T to 1.519 T with increasing Co content from x = 5 to 20. The Curie temperature of the present FeCoPC BMGs quickly increases with the substitution of Co for Fe.  相似文献   

12.
《Acta Materialia》1999,47(3):997-1006
Solute clustering and partitioning behavior in the early crystallization stage of an Fe73.5Si13.5B9Nb3Cu1 amorphous alloy have been studied by employing a three-dimensional atom probe (3DAP) and a high resolution electron microscope (HREM). Results from the 3DAP have clearly shown that Cu atom clusters are present in the amorphous state after annealing below the crystallization temperature. The density of these clusters is in the order of 1024/m3, which is comparable to that of the α-Fe grains in the optimum nanocrystalline microstructure. In the early stage of primary crystallization, Cu clusters are in direct contact with the α-Fe nanocrystals, suggesting that the α-Fe primary particles are heterogeneously nucleated at the site of Cu clusters. In the early stage of crystallization, the concentration of Si is lower in the primary crystal than in the amorphous matrix phase, unlike in the late stage of the primary crystallization, where Si partitions into the α-Fe phase with a composition of approximately 20 at.%.  相似文献   

13.
This paper reports the effect of adding 2 to 8 at.%Sn on the microstructure of Nb–25Ti–8Hf–2Cr–2Al–16Si. The samples were synthesised by casting and were heat treated for 5 days at 1200 °C. The as-cast and heat-treated microstructures were characterised using X-ray diffraction, scanning electron microscopy and microprobe analysis. The results revealed strong microstructural changes when Sn content exceeded 2 at.% Sn. The two-phase (Nb,Ti)SS/γ-M5Si3 composite evolves towards a quaternary phase equilibrium: (Nb,Ti)SS saturated with Sn/α-M5Si3/(Nb1−xTix)3(Sn1−yTiy)/γ′-M5Si3. The γ′-M5Si3 differs from the γ-M5Si3 through its Hf and Ti contents. The (Nb,Ti)SS fraction decreases strongly, benefitting the (Nb1−xTix)3(Sn1−yTiy) fraction. Therefore, adding greater than 2 at.% Sn addition may dramatically affect the mechanical properties of Nb/Nb5Si3 composites because the solid solution (Nb,Ti)SS has been shown to dominate the toughness of such materials.  相似文献   

14.
The phase constitutions, microstructural evolutions, and mechanical properties of Nb–16Si–22Ti–2Hf–2Al–2Cr–xFe alloys (where x = 1, 2, 4, 6 at.%, hereafter referred to as 1Fe, 2Fe, 4Fe and 6Fe alloys, respectively) prepared by arc-melting were investigated. It was observed that the nominal Fe content affected the solidification path of the multi-component alloy. The as-cast 1Fe alloy primarily consisted of a dendritic-like NbSS phase and (α+γ)-Nb5Si3 silicide, and the as-cast 2Fe and 4Fe alloys primarily consisted of an NbSS phase, (α+γ)-Nb5Si3 silicide and (Fe + Ti)-rich region. In addition to the NbSS phase, a multi-component Nb4FeSi silicide was present in the as-cast 6Fe alloy. When heat-treated at 1350 °C for 100 h, the 1Fe and 6Fe alloys almost exhibited the same microstructures as the corresponding as-cast samples; for the 2Fe and 4Fe alloys, the (Fe + Ti)-rich region decomposed, and Nb4FeSi silicide formed. The fracture toughness of the as-cast and heat-treated Nb–16Si–22Ti–2Hf–2Al–2Cr–xFe samples monolithically decreased with the nominal Fe contents. It is interesting that at room temperature, the strength of the heat-treated samples was improved by the Fe additions, whereas at 1250 °C and above, the strength decreased, suggesting the weakening role of the Nb4FeSi silicide on the high-temperature strength. As the nominal Fe content increased from 1 at.% to 6 at.%, for example, the 0.2% yield strength increased from 1675 MPa to 1820 MPa at room temperature; also, the strength decreased from 183 MPa to 78 MPa at 1350 °C.  相似文献   

15.
Influence of 1 h annealing in vacuum on magnetic, electrical and plastic properties of Fe76Nb2Si13B9, Fe75Ag1Nb2Si13B9 and Fe75Cu1Nb2Si13B9 melt spun ribbons were carefully investigated. It was shown that in all cases soft magnetic properties can be significantly enhanced by applying 1-h annealing at characteristic temperatures Top. This optimization annealing causes that permeability increases more than 15-times and magnetic losses (tangent of loss angle) achieves a minimum in relation to the as quenched state. Using structural examinations (X-ray and HRTEM) it was shown that for the Fe75Cu1Nb2Si13B9 alloy the optimized microstructure corresponds to a nanocrystalline αFe(Si) phase whereas in other alloys to a relaxed amorphous phase free of iron nanograins. As a consequence of this fact the Fe76Nb2Si13B9 and Fe75Ag1Nb2Si13B9 alloys show higher plasticity in comparison to the nanocrystalline Fe75Cu1Nb2Si13B9 alloy. Temperatures of the first stage of crystallization, and related diffusion parameters were determined using measurements of resistivity versus temperature with different heating rates.  相似文献   

16.
Addition of Fe refines the microstructure of Mo76-xSi14B10Fex (x = 0, 0.5, 1 at.%) composites containing α-Mo, Mo3Si and Mo5SiB2 phases, increases the hardness from 950 Hv (x = 0) to 1031 Hv (x = 1), and improves the oxidation resistance at temperature in the range of 800–1300 °C. The hardness of the base alloy substrate decreases only by <7% than that of as-solidified ingots, indicating good microstructural stability of the composite for high temperature application.  相似文献   

17.
《Intermetallics》2007,15(11):1453-1458
Effects of the Cr addition on glass formation, magnetic and corrosion properties of {[(Fe0.6Co0.4)0.75B0.2Si0.05]0.96Nb0.04}100xCrx (x = 1, 2, 3, 4 at.%) alloys have been investigated. It was found that the addition of Cr element slightly decreases the glass-forming ability (GFA), but is very effective in increasing corrosion resistance and improving soft magnetic properties for this Fe–Co–B–Si–Nb bulk glassy alloy within the composition range examined. The Fe–Co–B–Si–Nb–Cr alloys exhibit high GFA. Full glassy rods with diameters up to 4 mm can be synthesized by copper mold casting. The Fe-based bulk glassy alloys (BGAs) exhibit a high saturation magnetization of 0.81–0.98 T as well as excellent soft magnetic properties, i.e., extremely low coercive force of 0.6–1.6 A/m and super-high initial permeability of 26,400–34,100. Furthermore, corrosion measurements show that corrosion rate and corrosion current density of these Fe-based BGAs in 0.5 M NaCl solution decrease from 7.0 × 10−1 to 1.6 × 10−3 mm/year and 3.9 × 10−6 to 8.7 × 10−7 A/cm2, respectively, with increasing Cr content from 0 to 4 at.%. The success of synthesizing the new Fe-based BGAs exhibiting simultaneously high GFA as well as excellent good soft magnetic properties combined with high saturation magnetization and enhanced corrosion resistance allows us to expect future progress as a new type of soft magnetic materials.  相似文献   

18.
The effect of Ca on the microstructure and magnetocaloric effects has been investigated in the La1−xCaxFe11.5Si1.5 (x = 0, 0.1, 0.2 and 0.3) compounds. The introduction of Ca leads to the appearance of minor α-Fe and Ca-rich phases, which affects the actual compositions of the main phases for the Ca containing samples. With increasing the Ca concentration, the Curie temperature TC increases from 183 to 208 K, and the maximum magnetic entropy changes |ΔS| at the respective TC with a magnetic field change from 0 to 5 T are 21.3, 19.5, 16.9, and 11.2 J/kg K for x = 0, 0.1, 0.2, and 0.3, respectively. The nature of the magnetic transition changes from first-order to second-order with an increase in Ca concentration, which leads to a reduction of the hysteresis and a decrease of the magnetic entropy change. However, the relative cooling power for La1−xCaxFe11.5Si1.5 compounds remains comparable with or even larger than that of other magnetocaloric materials over a wide temperature range. The higher TC and the smaller hysteresis in comparison with those of the parent compound suggest that the La1−xCaxFe11.5Si1.5 compounds could be suitable candidates for magnetic refrigerants in the corresponding temperature range.  相似文献   

19.
The effect of P on the glass forming ability, soft magnetic properties and oxidation behavior of Fe78B13Si9-xPx (x = 0–7) amorphous alloys were investigated. It is found that the proper introduction of P, can effectively improve the glass forming ability and stability of supercooled liquid region. Fe78Si4B13P5 BMG, which exhibits high saturation flux density of 1.56 T, was readily made into rod sample with a diameter of 1.5 mm under air casting atmosphere. P bearing alloys also exhibit excellent soft magnetic properties containing low coercivity of 1.7–2.7 A/m, and high effective permeability of 8200–12,200. Slight oxidation can further improve the coercivity to a lower value of 1.1 A/m and the higher effective permeability to 11,900 for the alloys with P content no more than 3 at. %. Excessive addition of P may deteriorate the glass forming ability, soft magnetic properties and oxidation behavior. Magnetic domain revealing the magnetization process of the amorphous ribbons were characterized to explain the effect of P on magnetic properties and oxidation behavior.  相似文献   

20.
《Scripta materialia》2003,48(7):869-874
The effect of the addition of P and Cu to Fe85Nb6B9 alloy on an as-quenched structure and soft magnetic properties in a nanocrystallized state has been investigated. The Fe85Nb6B9 alloy melt-spun in air has an as-quenched structure of an amorphous phase and α-Fe grains with 20–45 nm in size. The coarse grains should still remain in the nanocrystallized structure, which deteriorates the soft magnetic properties. The simultaneous addition of 1 at.% P and 0.1 at.% Cu to the Fe85Nb6B9 alloy decreases the α-Fe grain size to nanoscale in an as-quenched state, and realizes a uniform crystallized structure with high saturation induction of 1.61 T as well as high permeability of 41,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号