首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the development of a discrete dynamic mean value engine model (MVEM) suitable for the design of speed controllers of ethanol fueled internal combustion engines (ICE), to be used in variable speed gensets. Two MVEMs are developed for the ICE: the Time Based model and the Crank Based model. The speed controller design is held through the discretization and linearization of the Crank Based MVEM. This model is used due to the advantages over the time based MVEM especially with respect to the transport delay which becomes constant. Two approaches for the ICE speed control are investigated: (i) a single loop gain-scheduled proportional integral (PI) controller and (ii) a dual loop control based on an internal gain-scheduled Manifold Absolute Pressure (MAP) feedback loop and an outer loop composed of a gain-scheduled PI controller. The control design is developed in the frequency domain and its stability is ensured by the phase and gain margins. In addition, an integral anti-windup and a feed forward action are also proposed to improve the behavior during control law saturation, improve transient responses and disturbance rejection capability. Experimental results on a 50 kW generator set are provided to validate the controllers and to demonstrate the performance of the system.  相似文献   

2.
Model predictive control (MPC) for Markovian jump linear systems with probabilistic constraints has received much attention in recent years. However, in existing results, the disturbance is usually assumed with infinite support, which is not considered reasonable in real applications. Thus, by considering random additive disturbance with finite support, this paper is devoted to a systematic approach to stochastic MPC for Markovian jump linear systems with probabilistic constraints. The adopted MPC law is parameterized by a mode‐dependent feedback control law superimposed with a perturbation generated by a dynamic controller. Probabilistic constraints can be guaranteed by confining the augmented system state to a maximal admissible set. Then, the MPC algorithm is given in the form of linearly constrained quadratic programming problems by optimizing the infinite sum of derivation of the stage cost from its steady‐state value. The proposed algorithm is proved to be recursively feasible and to guarantee constraints satisfaction, and the closed‐loop long‐run average cost is not more than that of the unconstrained closed‐loop system with static feedback. Finally, when adopting the optimal feedback gains in the predictive control law, the resulting MPC algorithm has been proved to converge in the mean square sense to the optimal control. A numerical example is given to verify the efficiency of the proposed results.  相似文献   

3.
In order to meet tight emission limits Diesel engines are nowadays equipped with additional hardware components like an exhaust gas recirculation valve and a variable geometry turbocharger. Conventional engine control units use two SISO control loops to regulate the exhaust gas recirculation valve and the variable geometry turbocharger, although their effects are highly coupled. Moreover, these actuators are subject to physical constraints which seems to make an advanced control approach like model predictive control (MPC) the method of choice. In order to deal with MPC sampling times in the order of milliseconds, we employed an extension of the recently developed online active set strategy for controlling a real-world Diesel engine in a closed-loop manner. The results show that predictive engine control based on online optimisation can be accomplished in real-time – even on cheap controller hardware – and leads to increased controller performance.  相似文献   

4.
We propose a novel way for sampled-data implementation (with the zero order hold assumption) of continuous-time controllers for general nonlinear systems. We assume that a continuous-time controller has been designed so that the continuous-time closed-loop satisfies all performance requirements. Then, we use this control law indirectly to compute numerically a sampled-data controller. Our approach exploits a model predictive control (MPC) strategy that minimizes the mismatch between the solutions of the sampled-data model and the continuous-time closed-loop model. We propose a control law and present conditions under which stability and sub-optimality of the closed loop can be proved. We only consider the case of unconstrained MPC. We show that the recent results in [G. Grimm, M.J. Messina, A.R. Teel, S. Tuna, Model predictive control: for want of a local control Lyapunov function, all is not lost, IEEE Trans. Automat. Control 2004, to appear] can be directly used for analysis of stability of our closed-loop system.  相似文献   

5.
In this paper, a distributed Model Predictive Control (DMPC) is proposed for the secondary voltage and frequency control of islanded microgrid, where each distributed generator (DG) is controlled by a Model Predictive Control (MPC) in the secondary control layer, individually. With considering the nonlinear dynamics of DG with primary control, input‐output feedback schemes are developed for voltage and frequency control separately. Then, all MPCs use the local and neighboring nodes information to solve the optimization problem instead of communicating with a central controller. In this way, the control of the whole system is fully distributed, which allows for a plug‐and‐play. The convergence and stability analysis of the overall closed‐loop system are provided. The simulation result shows the effectiveness of the proposed method.  相似文献   

6.
In this paper, the problem of sampled‐data model predictive control (MPC) is investigated for linear networked control systems with both input delay and input saturation. The delay‐induced nonlinearity is overapproximatively modeled as a polytopic inclusion. The nonlinear behavior of input saturation is expressed as a convex polytope. The resulting closed‐loop systems are represented as linear systems with polytopic and additive norm‐bounded uncertainties. The aim is to determine a robust MPC controller that asymptotically stabilizes the uncertain system at the origin with a certain level of quadratic performance. The effectiveness of the proposed algorithm is demonstrated by a numerical example.  相似文献   

7.
This paper considers a class of cyber‐physical networked systems, which are composed of many interacted subsystems, and are controlled in a distributed framework. The operating point of each subsystem changes with the varying of working conditions or productions, which may cause the change of the interactions among subsystems correspondingly. How to adapt to this change with good closed‐loop optimization performance and appropriate information connections is a problem. To solve this problem, the impaction of a subsystem's control action on the performance of related closed‐loop subsystems is first deduced for measuring the coupling among subsystems. Then, a distributed model predictive control (MPC) for tracking, whose subsystems online reconfigure their information structures, is proposed based on this impaction index. When the operating points changed, each local MPC calculates the impaction indices related to its structural downstream subsystems. If and only if the impaction index exceeds a defined bound, its behavior is considered by its downstream subsystem's MPC. The aim is to improve the optimization performance of entire closed‐loop systems and avoid the unnecessary information connections among local MPCs. Besides, contraction constraints are designed to guarantee that the overall system converges to the set points. The stability analysis is also provided. Simulation results show that the proposed impaction index is reasonable along with the efficiency of the proposed distributed MPC.  相似文献   

8.
Air-ratio is an important engine parameter that relates closely to engine emissions, power, and brake-specific fuel consumption. Model predictive controller (MPC) is a well-known technique for air-ratio control. This paper utilizes an advanced modelling technique, called online sequential extreme learning machine (OSELM), to develop an online sequential extreme learning machine MPC (OEMPC) for air-ratio regulation according to various engine loads. The proposed OEMPC was implemented on a real engine to verify its effectiveness. Its control performance is also compared with the latest MPC for engine air-ratio control, namely diagonal recurrent neural network MPC, and conventional proportional–integral–derivative (PID) controller. Experimental results show the superiority of the proposed OEMPC over the other two controllers, which can more effectively regulate the air-ratio to specific target values under external disturbance. Therefore, the proposed OEMPC is a promising scheme to replace conventional PID controller for engine air-ratio control.  相似文献   

9.
In this paper, a synthesis of model predictive control (MPC) algorithm is presented for uncertain systems subject to structured time‐varying uncertainties and actuator saturation. The system matrices are not exactly known, but are affine functions of a time varying parameter vector. To deal with the nonlinear actuator saturation, a saturated linear feedback control law is expressed into a convex hull of a group of auxiliary linear feedback laws. At each time instant, a state feedback law is designed to ensure the robust stability of the closed‐loop system. The robust MPC controller design problem is formulated into solving a minimization problem of a worst‐case performance index with respect to model uncertainties. The design of controller is then cast into solving a feasibility of linear matrix inequality (LMI) optimization problem. Then, the result is further extended to saturation dependent robust MPC approach by introducing additional variables. A saturation dependent quadratic function is used to reduce the conservatism of controller design. To show the effectiveness, the proposed robust MPC algorithms are applied to a continuous‐time stirred tank reactor (CSTR) process.  相似文献   

10.
We address the distributed model predictive control (MPC) for a set of linear local systems with decoupled dynamics and a coupled global cost function. By the decomposition of the global cost function, the distributed control problem is converted to the MPC for each local system associated with a cost involving neighboring system states and inputs. For each local controller, the infinite horizon control moves are parameterized as N free control moves followed by a single state feedback law. An interacting compatibility condition is derived, disassembled and incorporated into the design of each local control so as to achieve the stability of the global closed‐loop system. Each local system exchanges with its neighbors the current states and the previous optimal control strategies. The global closed‐loop system is shown to be exponentially stable provided that all the local optimizers are feasible at the initial time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated.An adaptive controller is provided to achieve the coordinated control between the engine speed and the battery charging voltage. The proposed adaptive coordinated control laws for the throttle angle of the engine and the voltage of the powerconverter can guarantee not only the asymptotic tracking performance of the engine speed and the regulation of the battery charging voltage, but also the robust stability of the closed loop system under external load changes. Simulation results are given to verify the performance of the proposed adaptive controller.  相似文献   

12.
Model predictive control (MPC) applications in the process industry usually deal with process systems that show time delays (dead times) between the system inputs and outputs. Also, in many industrial applications of MPC, integrating outputs resulting from liquid level control or recycle streams need to be considered as controlled outputs. Conventional MPC packages can be applied to time-delay systems but stability of the closed loop system will depend on the tuning parameters of the controller and cannot be guaranteed even in the nominal case. In this work, a state space model based on the analytical step response model is extended to the case of integrating time systems with time delays. This model is applied to the development of two versions of a nominally stable MPC, which is designed to the practical scenario in which one has targets for some of the inputs and/or outputs that may be unreachable and zone control (or interval tracking) for the remaining outputs. The controller is tested through simulation of a multivariable industrial reactor system.  相似文献   

13.
In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated. An adaptive controller is provided to achieve the coordinated control between the engine speed and the battery charging voltage. The proposed adaptive coordinated control laws for the throttle angle of the engine and the voltage of the power-converter can guarantee not only the asymptotic tracking performance of the engine speed and the regulation of the battery charging voltage, but also the robust stability of the closed loop system under external load changes. Simulation results are given to verify the performance of the proposed adaptive controller.  相似文献   

14.
Advanced control strategy is necessary to ensure high efficiency and high load-following capability in the operation of modern power plant. Model predictive control (MPC) has been widely used for controlling power plant. Nevertheless, MPC needs to further improve its learning ability especially as power plants are nonlinear under load-cycling operation. Iterative learning control (ILC) and MPC are both popular approaches in industrial process control and optimization. The integration of model-based ILC with a real-time feedback MPC constitutes the model predictive iterative learning control (MPILC). Considering power plant, this paper presents a nonlinear model predictive controller based on iterative learning control (NMPILC). The nonlinear power plant dynamic is described by a fuzzy model which contains local liner models. The resulting NMPILC is constituted based on this fuzzy model. Optimal performance is realized within both the time index and the iterative index. Convergence property has been proven under the fuzzy model. Deep analysis and simulations on a drum-type boiler–turbine system show the effectiveness of the fuzzy-model-based NMPILC  相似文献   

15.
A dual closed‐loop tracking control is proposed for a wheeled mobile robot based on active disturbance rejection control (ADRC) and model predictive control (MPC). In the inner loop system, the ADRC scheme with an extended state observer (ESO) is proposed to estimate and compensate external disturbances. In the outer loop system, the MPC strategy is developed to generate a desired velocity for the inner loop dynamic system subject to a diamond‐shaped input constraint. Both effectiveness and stability analysis are given for the ESO and the dual closed‐loop system, respectively. Simulation results demonstrate the performances of the proposed control scheme.  相似文献   

16.
Vibration suppression in flexible link manipulator is a recurring problem in most robotic applications. Solving this problem would allow to increase many times both the operative speed and the accuracy of manipulators. In this paper an innovative controller for flexible-links mechanism based on MPC (Model Predictive Control) with constraints is proposed. So far this kind of controller has been employed almost exclusively for controlling slow processes, like chemical plants, but the authors’ aim is to show that this approach can be successfully adapted to plants whose dynamical behavior is both nonlinear and fast changing. The effectiveness of this control system will be compared to the performance obtained with a classical industrial control. The reference mechanism chosen to evaluate the effectiveness of this control strategy is a four-link closed loop planar mechanism laying on the horizontal plane driven by a torque-controlled electric actuator.  相似文献   

17.
佟远  张莎 《测控技术》2016,35(8):85-88
针对倒立摆多变量、非线性和强耦合性等特性,设计并制作了基于PID双闭环的旋转倒立摆控制系统.以STM32控制器为主控核心,光电编码器为传感器,搭建了系统的硬件部分.软件部分主要包括起摆算法和稳摆算法,起摆算法基于能量补偿,稳摆算法采用PID双闭环.在系统实物上的实验结果验证了系统控制方案的可行性和良好的控制性能.  相似文献   

18.
Poor model quality is one of the most frequent causes of performance deterioration in Model Predictive Controllers. As such, frequent model evaluation and correction is fundamental. Some assessment methods are reported in the literature, but most cannot deal with Model Predictive Controllers (MPCs) without fixed setpoints for controlled variables. Botelho et al. (2015, 2016a, 2016b) proposed a series of methods that include the controller tuning and the applied MPC implementation in the assessment procedure. Their main advantage is setpoint independence. This paper analyzes the application of these methods in an industrial MPC with control ranges. The system studied is an MPC of a fractionating column in a delayed coker unit of a refinery in Brazil. The results demonstrate that the method is capable of correctly quantifying the effect of modeling problems and identifying whether they are related to a model-plant mismatch or unmeasured disturbance.  相似文献   

19.
We compare open loop versus closed loop identification when the identified model is used for control design, and when the system itself belongs to the model class, so that only variance errors are relevant. Our measure of controller performance (which is used as our design criterion for identification) is the variance of the error between the output of the ideal closed loop system (with the ideal controller) and that of the actual closed loop system (with the controller computed from the identified model). Under those conditions, we show that, when the controller is a smooth function of the input-output dynamics and the disturbance spectrum, the best controller performance is achieved by performing the identification in closed loop with an operating controller that we characterize. For minimum variance and model reference control design criteria, we show that this ‘optimal operating controller for identification’ is the ideal controller. This then leads to a suboptimal but feasible iterative scheme.  相似文献   

20.
This paper describes design and implementation of a control philosophy for simultaneous stabilization and performance improvement of an electromagnetic levitation system. An electromagnetic levitation system is an inherently unstable and strongly nonlinear system. To determine the overall closed loop stability for such a system, cascade lead‐lag compensation has mostly been reported [1,2]. However, a single lead controller can not satisfy both stability and performance for such unstable systems [3]. Performance enhancement to satisfy the conflicting requirements of fast response with almost zero overshoot and zero steady state error has been successfully achieved by using a two loop controller configuration. The lead controller in the inner loop is designed to ensure stability while the outer loop PI controller is designed for performance enhancement. This approach decouples the twin requirements of stabilization (by the inner loop) and performance achievement (by the outer PI loop). The outermost PI controller has been designed using the ‘Approximate Model Matching’ technique [4]. The proposed control strategy has been implemented and the experimentation has been demonstrated successfully. Different experimental results have been included for verification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号