首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental investigation is performed to study tensile properties, damage initiation and development in stitched carbon/epoxy composites subjected to tensile loading. T800SC-24kf dry preforms with tow orientation of [+45/90/−45/02/+45/902/−45/0]s are stitched using 200 denier Vectran® thread. Modified-lock stitch pattern is adopted, and stitch density is varied, viz. moderate density (stitched 6 × 6: stitch density = 2.8 cm−2) and high density (stitched 3 × 3: stitch density = 11.1 cm−2). The stitched preforms are then infiltrated by epoxy XNR/H6813 using resin transfer molding process. Tensile test is conducted to obtain in-plane mechanical properties (tensile strength, failure strain, tensile modulus and Poisson’s ratio). Effect of stitch density on the mechanical properties is assessed, and it is found that stitched 3 × 3 modestly improves the tensile strength by 10.4%, while stitched 6 × 6 reduces the strength by only 1.4%. In stitched 3 × 3 cases, the strength increase is mainly due to an effective impediment of edge-delamination. Tensile stiffness and Poisson’s ratio of carbon/epoxy are slightly reduced by stitching. Fiber misalignment in in-plane and out-of-plane directions is responsible for stiffness reduction, whilst reduction of Poisson’s ratio is probably caused by the orthogonal binding effect of modified-lock stitch architecture. Damage mechanisms in stitched and unstitched composites are studied using acoustic emission testing and interrupted test coupled with X-ray radiography and optical microscopy. The detailed damage observation reveals that stitch thread promotes early formation of transverse and oblique cracks. These cracks rapidly develop, and higher density of cracks ensues in stitched composites. Although this behavior triggers early formation of delamination, stitched 3 × 3 effectively impedes the growth the delamination. In contrast, stitched 6 × 6 is ineffective in suppressing the delamination yet the cracks are vast in this specimen. One of the plausible reasons of the rapid development of cracks in stitched composites is fiber compaction effect whereby fibers are compacted and the gap among fibers is reduced. The verification of compaction effect is done experimentally by performing burn-off test to measure the local fiber volume fraction. It is confirmed that fiber compaction indeed occurs as indicated by higher local fiber volume fraction between stitch lines.  相似文献   

2.
Fatigue response of stitched plain weave carbon/epoxy laminates containing circular holes is experimentally investigated. Two carbon/epoxy laminates of cross-ply [(0/90)]20 and quasi-isotropic [(±45)(0/90)2(±45)2(0/90)2(±45)2(0/90)]s are reinforced using Kevlar-29® yarns in through-thickness direction. The laminates are drilled to produce a circular hole with diameter of 5.7 mm. Stitch configuration for cross-ply laminates is round stitch and parallel stitch, while that for quasi-isotropic laminates is parallel stitch only. For round stitch configuration, the hole is surrounded by circular stitch line of 7-mm diameter. For parallel stitch, the distance between two stitch lines (spacing) is 15 mm. In all, three independent cases are presented in this paper: Case 1 (cross-ply laminates, round stitch, tension–tension fatigue); Case 2 (cross-ply laminates, parallel stitch, tension–tension fatigue); Case 3 (quasi-isotropic laminates, parallel stitch, compression–compression fatigue). In each case, comparison with unstitched laminates is made. Case 1 shows that round stitch reduces tension fatigue curve of carbon/epoxy laminates. Round stitch seems to aggravate the damage, which is emanating from the hole rim of laminates. It gradually diverts the damage towards the edge of the specimen and causes premature fatigue failure. Case 2 shows that although parallel stitch generally does not influence the fatigue life of laminates, the damage growth due to parallel stitch is apparently unstable after 8 million cycles. As a result, laminates with parallel stitch eventually fail before reaching 10 million cycles. In contrast, unstitched laminates are able to sustain fatigue load for more than 10 million cycles. Case 3 shows that under compression fatigue load, fatigue limit of stitched plain weave laminates is better than that of the unstitched ones due to damage redistribution along the stitch lines.  相似文献   

3.
Tension–tension fatigue properties of SiC fiber reinforced Ti–6Al–4V matrix composite (SiCf/Ti–6Al–4V) at room temperature were investigated. Fatigue tests were conducted under a load-controlled mode with a stress ratio 0.1 and a frequency 10 Hz under a maximum applied stress ranging from 600 to 1200 MPa. The relationship between the applied stress and fatigue life was determined and fracture surfaces were examined to study the fatigue damage and fracture failure mechanisms using SEM. The results show that, the fatigue life of the SiCf/Ti–6Al–4V composite decreases substantially in proportion to the increase in maximum applied stress. Moreover, in the medium and high life range, the relationship between the maximum applied stress and cycles to failure in the semi-logarithmic system could be fitted as a linear equation: Smax/μ = 1.381  0.152 × lgNf. Fractographic analysis revealed that fatigue fracture surfaces consist of a fatigued region and a fast fracture region. The fraction of the fatigued region with respect to the total fracture surface decreases with the increase of the applied maximum stresses.  相似文献   

4.
《Composites Part B》2001,32(5):431-439
The effectiveness of stitching in increasing the damage resistance of polymer composites against ballistic projectiles and explosive blasts is determined. Glass-reinforced vinyl ester composites stitched in the through-thickness direction with thin Kevlar®-49 yarn were impacted with a bullet travelling at 0.9 km s−1 or an underwater explosive shock wave moving at 1.5 km s−1. The amount of delamination damage to the composite caused by a ballistic projectile was reduced slightly with stitching. Stitching was highly effective in increasing the damage resistance against explosive blast loading. The increased damage resistance was due to the stitching raising the Mode I interlaminar fracture toughness of the composite. While the stitched composites experienced slightly less damage, their flexural modulus and strength was similar to the properties of the unstitched composite after ballistic impact testing. The post-blast flexural properties of the stitched composites, on the other hand, were degraded less than the properties of the unstitched material.  相似文献   

5.
An organomodified surface nanoclay reinforced epoxy glass-fiber composite is evaluated for properties of mechanical strength, stiffness, ductility and fatigue life, and compared with the pristine or epoxy glass-fiber composite material not reinforced with nanoclays. The results from monotonic tensile tests of the nanoclay reinforced composite material at 60 °C in air showed an average 11.7% improvement in the ultimate tensile strength, 10.6% improvement in tensile modulus, and 10.5% improvement in tensile ductility vs. these mechanical properties obtained for the pristine material. From tension–tension fatigue tests at a stress-ratio = +0.9 and at 60 °C in air, the nanoclay reinforced composite had a 7.9% greater fatigue strength and a fatigue life over a decade longer or 1000% greater than the pristine composite when extrapolated to 109 cycles or a simulated 10-year cyclic life. Electron microscopy and Raman spectroscopy of the fracture and failure modes of the test specimens were used to support the results and conclusions. This nanocomposite could be used as a new and improved material for repair or rehabilitation of external surface wall corrosion or physical damage on piping and vessels found in petrochemical process plants and facilities to extend their operational life.  相似文献   

6.
The hybrids of multi-walled carbon nanotube and poly(lactic acid) (MWCNT/PLA) were prepared by a melt-blending method. In order to enhance the compatibility between the PLA and MWCNTs, the surface of the MWCNTs was covalently modified by Jeffamine® polyetheramines by functionalizing MWCNTs with carboxylic groups. Different molecular weights and hydrophilicity of the polyethermaines were grafted onto MWCNTs with the assistance of a dehydrating agent. The results showed that low-molecular-weight Jeffamine® polyetheramine modified MWCNTs can effectively improve the thermal properties of PLA composites. On the other hand, high-molecular-weight and poly(oxyethylene)-segmented polyetheramine could render the modified MWCNTs of well dispersion in PLA, and consequently affecting the improvements of mechanical properties and conductivity of composite materials. With the addition of 3.0 wt% MWCNTs, the increment of E′ of the composite at 40 °C was 79%. For conductivity, the surface resistivity decreased from 1.27 × 1012 Ω/sq for neat PLA to 8.30 × 10−3 Ω/sq for the composites.  相似文献   

7.
The electric heating and piezoresistive characteristics of CuO–woven carbon fiber (CuO–WCF) composite laminates were experimentally evaluated. Hybrid CuO–WCF composites were fabricated via a two-step seed-mediated hydrothermal method. The interlaminar interface between two plies of hybrid CuO–WCF/vinyl ester composite laminae was influenced by interlocked fiber–fiber cross-linking structures with CuO NRs and acted as electric heating and resistance elements. The contribution of CuO NRs (10–110 mM) to the interlaminar interface was determined by measuring the temperature profile, in order to investigate the electrical resistive heating behavior. At higher concentration of CuO NRs growth in the interlaminar region applied by 3 A, the average temperature reached to 83.55 °C at the interface area 50 × 50 mm2 and the heating efficiency was 0.133 W/°C owing to radiation and convection given by 10.5 W (3 A, 3.5 V). To investigate the piezoresistive response, the through-thickness gauge factor was observed at 0.312 during Joule heating applied by 2 A, compared with 0.639 at an ambient air temperature for CuO 110 mM concentration. The morphology and crystallinity of CuO NRs were investigated using scanning electron microscopy and X-ray diffraction analyses, respectively. The temperature dependence of hybrid CuO–WCF composite laminates’ storage moduli were analyzed using a dynamic mechanical analyzer. These characterizations showed that the interlaminar interface, combined with the high specific surface area of CuO NRs, provided the electron traps for electrical conduction around multiple WCF junctions and adjacent cross-linked laminae.  相似文献   

8.
Three-dimensional braided carbon fiber-reinforced ZrC matrix composite, 3-D Cf/ZrC, were prepared by liquid metal infiltration process at 1200 °C using a Zr2Cu intermetallic compound as infiltrator. The microstructure and properties of the composites were investigated. The results indicated that ZrC with a yield of 35.2 ± 1.8 vol.% was certified as the major phase of the composites. The formation of ZrC was controlled by a solution-precipitation mechanism. The obtained composites exhibited good mechanical properties, with a flexural strength of 293.0 ± 12.1 MPa, a flexural modulus of 82.7 ± 6.4 GPa and a fracture toughness of 9.8 ± 0.9 MPa m1/2. The mass and linear ablation rates of the composites exposed to oxyacetylene torch were 0.0013 ± 0.0005 g s−1 and −0.0009 ± 0.0003 mm s−1, respectively. The formation of a dense ZrO2 protective layer and the evaporation of residual Cu contributed mainly to the excellent ablation resistance.  相似文献   

9.
《Composites Part A》2007,38(4):1174-1182
This study examines the effect of stitching on the impact performance of a class of graphite/epoxy cross-ply laminates with the aim of investigating the ability of through-thickness reinforcement to improve the delamination resistance of laminates.Unstitched and stitched rectangular specimens (65 mm × 87.5 mm) were simply supported by a steel plate having a rectangular opening 45 mm × 67.5 mm in size and impacted at the center with energies ranging between 1 and 13 J. Stitched and unstitched laminates revealed similar structural performances in terms of force versus displacement response, energy absorption and residual indentation depth. It was also observed that whereas stitching does not appear capable of preventing the initiation and spread of delaminations, it induces a clear reduction of damage area when stitches bridge delaminations sufficiently developed in length.  相似文献   

10.
This paper studies the fatigue behavior of basalt fiber reinforced epoxy polymer (BFRP) composites and reveals the degradation mechanism of BFRP under different stress levels of cyclic loadings. The BFRP composites were tested under tension–tension fatigue load with different stress levels by an advanced fatigue loading equipment combined with in-situ scanning electron microscopy (SEM). The specimens were under long-term cyclic loads up to 1 × 107 cycles. The stiffness degradation, SN curves and the residual strength of run-out specimens were recorded during the test. The fatigue strength was predicted with the testing results using reliability methods. Meanwhile, the damage propagation and fracture surface of all specimens were observed and tracked during fatigue loading by an in-situ SEM, based on which damage mechanism under different stress levels was studied. The results show the prediction of fatigue strength by fitting SN data up to 2 × 106 cycles is lower than that of the data by 1 × 107 cycles. It reveals the fatigue strength perdition is highly associated with the long-term run-out cycles and traditional two million run-out cycles cannot accurately predict fatigue behavior. The SEM images reveal that under high level of stress, the critical fiber breaking failure is the dominant damage, while the matrix cracking and interfacial debonding are main damage patterns at the low and middle fatigue stress level for BFRP. Based on the above fatigue behavior and damage pattern, a three stage fracture mechanism model under fatigue loading is developed.  相似文献   

11.
An actively cooled vascular polymer matrix composite containing 3.0% channel volume fraction retains greater than 90% flexural stiffness when exposed continuously to 325 °C environmental temperature. Non-cooled controls suffered complete structural failure through thermal degradation under the same conditions. Glass–epoxy composites (Tg = 152 °C) manufactured by vacuum assisted resin transfer molding contain microchannel networks of two different architectures optimized for thermal and mechanical performance. Microchannels are fabricated by vaporization of poly(lactide) fibers treated with tin(II) oxalate catalyst that are incorporated into the fiber preform prior to resin infiltration. Flexural modulus, material temperature, and heat removal rates are measured during four-point bending testing as a function of environmental temperature and coolant flow rate. Simulations validate experimental measurements and provide insight into the thermal behavior. Vascular specimens with only 1.5% channel volume fraction centered at the neutral bending axis also retained over 80% flexural stiffness at 325 °C environmental temperature.  相似文献   

12.
《Materials Research Bulletin》2013,48(11):4924-4929
Compositions based on (1−x)Ca0.6Nd8/3TiO3x(Li1/2Nd1/2)TiO3 + yLi (CNLNTx + yLi, x = 0.30–0.60, y = 0–0.05), suitable for microwave applications have been developed by systematically adding excess lithium in order to tune the microwave dielectric properties and lower sintering temperature. Addition of 0.03 excess-Li simultaneously reduced the sintering temperature and improved the relative density of sintered CNLNTx ceramics. The excess Li addition can compensate the evaporation of Li during sintering process and decrease the secondary phase content. The CNLNTx (x = 0.45) ceramics with 0.03 Li excess sintered at 1190 °C have single phase orthorhombic perovskite structure, together with the optimum combination of microwave dielectric properties of ɛr = 129, Q × f = 3600 GHz, τf = 38 ppm/°C. Obviously, excess-Li addition can efficiently decrease the sintering temperature and improve the microwave dielectric properties. The high permittivity and relatively low sintering temperatures of lithium-excess Ca0.6Nd0.8/3TiO3/(Li0.5Nd0.5)TiO3 ceramics are ideal for the development of low cost ultra-small dielectric loaded antenna.  相似文献   

13.
Magnetically-sensitive polyurethane composites, which were crosslinked with multi-walled carbon nanotubes (MWCNTs) and were filled with Fe3O4 nanoparticles, were synthesized via in situ polymerization method. MWCNTs pretreated with nitric acid were used as crosslinking agents. Because of the crosslinking of MWCNTs with polyurethane prepolymer, the properties of the composites with a high content of Fe3O4 nanoparticles, especially the mechanical properties, were significantly improved. The composites showed excellent shape memory properties in both 45 °C hot water and an alternating magnetic field (f = 45 kHz, H = 29.7 kA m−1). The shape recovery time was less than one minute and the shape recovery rate was over 95% in the alternating magnetic field.  相似文献   

14.
《Materials Letters》2007,61(11-12):2499-2501
A single crystal of Tb: KLu(WO4)2 with dimensions of 40 mm × 40 mm × 18 mm has been grown by the top-seeded solution growth (TSSG) method. The color of the crystal is brown. Absorption and fluorescence spectra were measured at room temperature. The measured specific heat is a little lower than that of Yb: KLW (0.365 J/g K) at 90 °C. The measured mean linear coefficients of thermal expansion are αa = 17.1643 × 10 6 K 1, αa = 14.0896 × 10 6 K 1, αb = 8.7938 × 10 6 K 1, αc = 23.1745 × 10 6 K 1, αc = 20.2866 × 10 6 K 1. The results indicate that the crystal has a large anisotropy. The refractive index was measured.  相似文献   

15.
《Materials Research Bulletin》2013,48(11):4723-4728
Self-dopant LaMnO3+δ nanoparticles have been successfully synthesized by metal citrate complex method based on Pechini-type reaction route, at low temperature (773 K). Powder X-ray diffraction and transmission electron microscope revealed pure and nanostructured phase of LaMnO3+δ (δ = 0.125) with an average grain size of ∼72 nm (773 K) and ∼80 nm (1173 K). DC-magnetization measurements under an applied magnetic field of H = ±60 kOe showed an increase in the magnetization with the increase of calcination temperature. Ferromagnetic nature shown by non-stoichiometric LaMnO3+δ was verified by well-defined hysteresis loop with large remanent magnetization (Mr) and coercive field (Hc). Surface areas of LaMnO3+δ nanoparticles were found to be 157.4 and 153 m2 g−1 for the samples annealed at 773 K and 1173 K, respectively.  相似文献   

16.
In the present study, the extent of jute and viscose fibre breakage during the extrusion process on the fracture toughness and the fatigue properties was investigated. The composite materials were manufactured using direct long fibre thermoplastic (D-LFT) extrusion, followed by compression moulding. The fracture toughness (KIC) and the fracture energy (GIC) of the PP–J30 composites were significantly improved (133% and 514%, respectively) with the addition of 10 wt% viscose fibres, indicating hindered crack propagation. The addition of viscose fibres resulted in three times higher fatigue life compared with that of the unmodified jute composites. Further, with the addition of (2 wt%) MAPP, the PP–J30–V10 resulted in a higher average viscose fibre length of 8.1 mm, and the fracture toughness and fracture energy increased from 9.1 to 10.0 MPa m1/2 and 28.9 to 31.2 kJ/m2, respectively. Similarly, the fatigue life increased 51% compared with the PP–J30–V10, thus demonstrating the increased work energy due to hindrance of the propagation of cracks.  相似文献   

17.
This paper reports the accelerated thermal ageing behaviors of pure epoxy resin and 3-D carbon fiber/epoxy braided composites. Specimens have been aged in air at 90 °C, 110 °C, 120 °C, 130 °C and 180 °C. Microscopy observations and attenuated total reflectance Fourier transform infrared spectrometry analyses revealed that the epoxy resin oxidative degradation only occurred within the surface regions. The surface oxidized layer protects inner resin from further oxidation. Both the resin degradation and resin stiffening caused by post-curing effects will influence the compression behaviors. For the braided composite, the matrix ageing is the main ageing mode at temperatures lower than glass transition temperatures (Tg) of the pure epoxy resin, while the fiber/matrix interface debonding could be observed at the temperatures higher than Tg, such as the temperature of 180 °C. The combination of matrix degradation and fiber/resin interface cracking leads to the continuous reduction of compressive behaviors.  相似文献   

18.
《Composites Part A》2007,38(3):795-801
This paper examines the influence of binder tow stitch density on the impact performance of advanced composite structures. Spatially reinforced composite reinforcements with multi-axis, multi-layer structures were woven on a specially developed loom. The binder tow stitch density, which was used to consolidate the structure, was varied in the range of 1–4 binder tow stitches/cm2 (10 × 10 mm to 5 × 5 mm binder tow stitch spacing). A drop weight impact test (6.7 J/mm of composite thickness) was used to damage the samples. Both the depth of penetration and the damage area were measured after impact. The analysis of the results has shown that as the binder tow stitch density was increased the extent of damage decreased. The weave architecture, in terms of the relative position of the ±45° tows, was also shown to be a significant factor, the nearer the off-axis tows are to the impact surface the greater was the damage area.  相似文献   

19.
The polymer composites composed of graphene foam (GF), graphene sheets (GSs) and pliable polydimethylsiloxane (PDMS) were fabricated and their thermal properties were investigated. Due to the unique interconnected structure of GF, the thermal conductivity of GF/PDMS composite reaches 0.56 W m−1 K−1, which is about 300% that of pure PDMS, and 20% higher than that of GS/PDMS composite with the same graphene loading of 0.7 wt%. Its coefficient of thermal expansion is (80–137) × 10−6/K within 25–150 °C, much lower than those of GS/PDMS composite and pure PDMS. In addition, it also shows superior thermal and dimensional stability. All above results demonstrate that the GF/PDMS composite is a good candidate for thermal interface materials, which could be applied in the thermal management of electronic devices, etc.  相似文献   

20.
A method for simultaneous measurement of the thickness and density for Glass Fiber-Reinforced Polymer (GFRP) laminate plates with ultrasonic waves in C-Scan mode is presented in the form of maps. The method uses three different signals in immersion pulse-echo C-Scan mode. The maps obtained based on the density show the heterogeneity of the material at high resolution at the pixel level (1 × 1 mm2) and therefore they represent an efficient tool to assess and evaluate the damage of the composite structures after manufacturing and after an applied mechanical loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号