首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term information on switchgrass (Panicum virgatum L.) as a biomass energy crop grown on marginally saline soil and the associated impacts on soil carbon (C) and nitrogen (N) dynamics, greenhouse gas (GHG) emissions, and best management practices (BMPs) are limited. In this study, we employed the DAYCENT model, based on a 4-year switchgrass field experiment, to evaluate the long-term biomass yield potential and environmental impacts, and further to develop BMPs for switchgrass in a semi-arid region.The model showed that long-term (14-year) annual mean biomass yields were 9.6 and 5.2 Mg ha−1 for irrigated and rainfed switchgrass systems, respectively. The simulated biomass yields correlated well with field-measured biomass with r2 values of 0.99 and 0.89 for irrigated and rainfed systems, respectively. Soil organic carbon (SOC) and soil total nitrogen (STN) accumulated rapidly after switchgrass establishment, with mean accrual rates of 0.99–1.13 Mg C ha−1 yr−1 and 0.04–0.08 Mg N ha−1 yr−1, respectively. Based on the outputs of numerous long-term model simulations with variable irrigation water supplies and N rates, the irrigation regime and N rate with the highest yield to input ratio were chosen as BMPs. The DAYCENT model predicted-BMP was irrigating every 14 days at 70% potential evapotranspiration combined with an N rate of 67 kg ha−1 yr−1. Switchgrass established and produced biomass reasonably well in this semi-arid region; however, appropriate irrigation and N fertilization were needed for optimal biomass yield. Switchgrass had a great potential to sequester C into soils with low N2O emissions while supplying significant quantities of biomass for biofuel synthesis.  相似文献   

2.
Sustainable forestry is based on the principle that harvesting practices should avoid negative influence on soil fertility, wood production and long-term soil carbon (C) stocks. We examined C and nutrient concentrations and stocks of Scots pine (Pinus sylvestris L.) stands on Arenosols in south-western Lithuania. The stands were 10, 20, 40, 50 and 65 years of age. C concentrations were relatively constant, while the concentrations of N, P, K, Ca, Mg and S often varied between compartments and stand ages.The total aboveground stocks of nitrogen (N) were estimated to be in the range of 185–260 kg ha−1, and 78–189 kg ha−1 for calcium (Ca), 75–104 kg ha−1 for potassium (K), 22–33 kg ha−1 for phosphorus (P), 21–41 kg ha−1 for magnesium (Mg) and 16–28 kg ha−1 for sulphur (S). Corresponding stocks of the crown alone were 139–207 kg ha−1 of N, 54–88 kg ha−1 of Ca, 44–79 kg ha−1 of K, 15–26 kg ha−1 of P, 15–23 kg ha−1 of Mg, and 11–15 kg ha−1 of S. Biomass, C and nutrient stocks in the crown did not change with age, whereas the stemwood stocks increased with stand age. The total removals of C and N over a whole 100-year rotation were simulated to be 129 Mg ha−1 and 449 kg ha−1, respectively. An example scenario was created to compare the magnitude of potential nutrient removals with the atmospheric influx, soil stocks, and the internal litterfall flux. We suggest that intensified utilisation of these stands for bioenergy may be sustainable.  相似文献   

3.
Improper management of cattle manure and poultry litter from confined animal farming are usually source of water pollution. However, appropriate application of these products on switchgrass (Panicum virgatum L.) field can enhance biomass yield and promote nutrient recycling. We evaluated the effects of harvest frequency and nutrient sources on yield and quality of switchgrass for biofuel feedstock. The experiment was carried out at Perkins and Lake Carl Blackwell, Oklahoma, from 2009 to 2011 using split plot design with four replications. The main plot treatments were two harvest frequencies single (June), and twice (June and November). The subplot treatments were nutrient sources: 1) cattle manure (CM), 2) poultry litter (PL), 3) urea (nitrogen at 150 kg ha−1), 4) combined chemical fertilizer (nitrogen-P2O5–K2O) with nitrogen at 150 kg ha−1, P2O5 at 40 kg ha−1, and K2O at 20 kg ha−1, 5) inter-seeded Crimson clover (Trifolium incarnatum L.), and 6) control. Mean biomass yield was higher (12.4 Mg ha−1) in 2010 than other years possibly due to optimum moisture and temperature in 2010. At Perkins in 2010, application of CM and PL increased biomass yield significantly by 30 and 23% compared with combined chemical fertilizer (12.9 Mg ha−1). The effect of nutrient sources on cellulose, hemicellulose and lignin content was not significant at both locations. Cumulative biomass from twice harvest was similar to single harvest except in 2011 due to dry weather after the first cut. The cellulose and lignin content were significantly higher for single harvest compared with twice harvest at both locations.  相似文献   

4.
Switchgrass (Panicum virgatum L.) is a fast growing native C4 perennial and a lignocellulosic biomass crop for North America. In combination with biochar, an active plant growth promoting rhizobacterial (PGPR) community can contribute to the long-term sequestration of carbon in soil, fix nitrogen, and enhance the availability of other nutrients to plants. Biochar and PGPR have the potential to improve grass biomass production, but they have not been tested together under high-latitude temperate zone field conditions. Therefore, the objective of this three-year field study was to determine whether there were effects on biomass yield and yield components of switchgrass (cv. Cave-in-Rock) due to a rhizobacterium that was able to mobilize soil phosphorus (Pseudomonas rhodesiae), a bacterial consortium that was able to supply nitrogen (Paenibacillus polymyxa, Rahnella sp., and Serrati sp.), and pine wood chip biochar applied as a soil amendment at 20 Mg ha−1. The incorporation of biochar, or inoculation with the N-fixing consortium, and the combined inoculation of the experimental bacteria had positive effects on switchgrass height. At a loam soil site in Sainte-Anne-de-Bellevue, Québec, when nitrogen fertilizer was not applied, the addition of biochar had a positive effect on stand count (tillers m−1 row). On the sandy soil in Sainte-Anne-de-Bellevue, when biochar was applied with 100 kg N ha−1, biomass yield increased over the control but did not provide additional benefits over plots receiving only 50 kg N ha−1. It remains unclear whether or not the increased C sequestration of this management system justifies increased N fertilizer usage.  相似文献   

5.
Yields, water use efficiency and economic returns (net farm revenues) of biomass sorghum [Sorghum bicolor (L.) Moench] were investigated over two years (2012 and 2014) under limited water resource conditions. Energy sorghum was grown under four water supply regimes: rain-fed (or dry-land, level 1), 50% (level 2), 75% (level 3) and 100% (level 4) of crop evapotranspiration rates (% ETc). Biomass yields ranged from 5.8 to 16.6 Mg ha−1 (dry weight) after 126 days of growth. Average water use efficiencies ranged from 3.95 kg m−3 to 23.4 kg m−3. Net return was approximately 410 $ ha−1 with water depths above 400 ha-mm. These results suggest that it is possible to obtain more than 60 Mg ha−1 of sorghum biomass (wet basis) with at least 425 mm of water. While biomass yield under irrigation was greater than rain-fed conditions, there were no significant differences among irrigation treatments. Biomass chemical composition did not differ significantly among water treatments suggesting that biofuel quality would not be affected by water deficits.  相似文献   

6.
The energy crop Miscanthus x. giganteus is a deep rooting perennial rhizomatous C4 grass with great biomass production, even under temperate German climate conditions. Accordingly we hypothesized that this crop may accumulate great amounts of carbon in soil, particularly in deeper soil layers. We sampled several former C3-derived arable fields that had been cropped with Miscanthus for 0–19 years. We were able to trace the origin and turnover of soil organic C (SOC) on the basis of natural 13C/12C abundance measurements. The analysis was performed on bulk soil samples and on particle-size fractions that are known to comprise SOC of different availability for decay. Miscanthus-derived C accumulated at a rate of 1800 kg ha−1 y−1 down to a soil depth of 100 cm. Only about 50% of this C accrual occurred in the surface soil (0–10 cm). The C accumulation differed among size fractions. Miscanthus-derived C in the coarse-POM fraction increased rapidly during the first years of Miscanthus cultivation until a steady state was reached after approximately seven years. The stocks of Miscanthus-derived C associated with the clay fraction increased at a rate of 230 kg ha−1 y−1 in 0–5 cm, 45 kg ha−1 y−1 in 20–30 cm and 38 kg ha−1 y−1 in 50–75 cm. The C accumulation rate decreased with increasing soil depth. In particular, Miscanthus-derived C associated with the clay fraction led to increasing SOC stocks, even below the former Ap; that is, below a depth that would respond sensitively to a future land use change.  相似文献   

7.
Two field experiments were carried out in 2005 and 2006 in central Italy in order to evaluate the biomass production and quality in eight sorghum hybrids, to define their biomass partitioning among leaves, panicles and stems and to identify which were the most adapted at early harvest. Sorghum showed a high potential in terms of biomass production in central Italy, with biomass dry yield of 25 t ha−1 in average, adopting low input in terms of irrigation and fertilization. The most productive hybrids were H133 (26.3 t ha−1) and H952 (25.9 t ha−1) among the biomass hybrids and SS506 (27.3 t ha−1) among the forage hybrids. The trends of dry weight and moisture content of biomass during the different hybrids growth cycles allowed to estimate the biomass production of each hybrids, hypothesizing an early harvest at 20 August with in-field drying of biomass. Early harvest reduced dry weight of biomass from 4.6% to 21.7%, depending of hybrids; SS506 and H128 showed to be the most adapted at early harvest. HHV and LHV of biomass showed average values higher in biomass hybrids (18.4 and 17.5 MJ kg−1 d.m.) than in forage hybrids (17.7 and 16.8 MJ kg−1 d.m.); while, ash content average values were lower in biomass hybrids (6.8% d.m.) than in forage hybrids (7.7% d.m.). The highest values of leaves + panicles partitioning in the forage hybrids increased ash content, reducing the quality of their biomass for thermal utilization; the biomass hybrids should be therefore preferable.  相似文献   

8.
The rising price of fossil fuel and the increasing environmental concern encourage the use of biomasses as energy sources. Aim of this study was to compare two poplar SRC and vSRC (6 and 3 years rotation cycle) with an annual crop (maize), used for biomass production in north Italy.The average of the biomass production was 13.9 Mg DM ha−1 per year for the SRC and vSRC poplar and 19.2 Mg DM ha−1 for the maize.The energy consumption for the poplar cultivations was about 15 GJ ha−1 per year, which represented only the 6% of the energy biomass product (about 257 GJ ha−1 per year).The input value of the maize was higher (26.8 GJ ha−1 per year). In this case, the input value was about the 7% of the energy content in the biomass product (about 370 GJ ha−1 per year).During the vSRC cultivation an amount of 8090 kg CO2 eq ha−1 was emitted, 6420 kg CO2 eq ha−1 for the SRC and 26,370 kg CO2 eq ha−1 for the maize.Compared to the maize, the poplar SRC (or vSRC) crops are interesting from an energetic point of view, while maize requires less manpower, but it has major problems related to the landscape biodiversity.  相似文献   

9.
Growing biomass on non-agricultural land could potentially deliver renewable energy services without displacing land from food production, avoiding the social and environmental conflicts associated with bioenergy. A variety of derelict underutilized and neglected land types are possible candidates, sharing a number of challenges for agronomy, including contaminants in soils, potential uptake and dispersion through energy use. Most previous field trials have grown woody biomass species during phytoremediation. Five one-hectare brownfield sites in NE England, were each amended with c.500 t ha−1 of green-waste compost, planted with short-rotation coppice willow, Miscanthus, reed canarygrass and switchgrass,1 and then harvested for 3–5 years.Critical issues for the economic and environmental viability of energy production on brownfield land were investigated: The yields achieved on non-agricultural land; the potential for fuel contamination; the suitability for use and potential markets for any biomass produced. RCG appears best suited to the challenging soil conditions found on non-agricultural land, outperforming other species in ease of establishment, cost, time to maturity, yield and contamination levels. Invasive spreading and low melting ash compositions were not observed. Annual yields of 4–7 odt ha−1 from the second growth season were found consistently across a range of previously-developed, capped or former landfill sites, with a gross annual energy yield of 97 GJ ha−1 at contamination levels acceptable for domestic pellets. The analogy with marginal agricultural land suggests that this species and approach could help boost biomass production while avoiding the natural capital “nexus” related to global food-fuel-land-water limits.  相似文献   

10.
Miscanthus is a perennial rhizomatous C4 grass with high yield potentials and low nutrient needs, thus a promising candidate for the production of cellulosic biomass. While optimal management options and yields attainable on a commercial scale are still debated, no study has yet addressed its removal and potential effects on following crops. Here, we present results from a trial involving a 20-year old Miscanthus stand on i) soil C, N, P and K stocks, compared with an adjacent field cultivated with a rotation of annual arable food crops, ii) the greenhouse gases (GHG) emissions following the removal of Miscanthus and iii) the immediate short-term effects on the following land use (re-cultivation to wheat or set-aside).Compared to the adjacent field under annual crops, the Miscanthus plot had a larger soil organic C stock (by 13 t C ha−1) but a similar N stock, and lower P and K stocks (with differences of 100 kg P ha−1 and 1170 kg K ha−1, respectively). These losses imply that some degree of fertilization may be necessary as compensation. The effects of Miscanthus removal for the following wheat were significant on crop N content but negligible on grain yield.1.5 t CO2 ha−1 of CO2 were released after the Miscanthus removal and the N2O emissions increased from 150 g N2O-N ha−1 to 493 g N2O-N ha−1 during the following year. These results highlight the importance of investigation of the end-of-life stage of perennial crops for an accurate assessment of their environmental impacts.  相似文献   

11.
Johansson, T. 2011. Biomass equations for hybrid larch growing on farmland.Data were collected from 20 stands of hybrid larch (Larix x eurolepis) growing on abandoned farmland in southern and central Sweden (Lat. 55–60° N.). The mean stand age was 19 years (range 18–23). The mean number of stems per hectare was 1150 (range 364–2374) and the mean breast height diameter (over bark) was 15.6 cm (6.8–24.2). Soil types in the stands were light and medium clay and tills (sandy-silty and light clay).Mean dry weight above stump level (20 cm) for a hybrid larch tree in this study was 117 kg (range 36–245) and the standing dry weight for hybrid larch stands was 120 t ha−1 (42–350). Mean annual increment (MAI) for the tree was 6.09 kg y−1 (1.89–13.61) corresponding to production of 90–120 t ha−1 after 15–20 years growth and a stem number of 1000–1500, if the stand is mainly used for biomass. Alternatively, for pulp wood and timber production a rotation period of 30–40 years can be used, with thinnings being exploited for biomass.  相似文献   

12.
Nitrogen (N) fertilization can increase bioenergy crop production; however, fertilizer production and application can contribute to greenhouse gas (GHG) emissions, potentially undermining the GHG benefits of bioenergy crops. The objective of this study was to evaluate the effects of N fertilization on GHG emissions and biomass production of switchgrass bioenergy crop, in northern Michigan. Nitrogen fertilization treatments included 0 kg ha−1 (control), 56 kg ha−1 (low) and 112 kg ha−1 (high) of N applied as urea. Soil fluxes of CO2, N2O and CH4 were measured every two weeks using static chambers. Indirect GHG emissions associated with field activities, manufacturing and transport of fertilizer and pesticides were derived from the literature. Switchgrass aboveground biomass yield was evaluated at the end of the growing season. Nitrogen fertilization contributed little to soil GHG emissions; relative to the control, there were additional global warming potential of 0.7 Mg ha−1 y−1 and 1.5 Mg ha−1 y−1 as CO2 equivalents (CO2eq), calculated using the IPCC values, in the low and high N fertilization treatments, respectively. However, N fertilization greatly stimulated CO2 uptake by switchgrass, resulting in 1.5- and 2.5-fold increases in biomass yield in the low and high N fertilization treatments, respectively. Nitrogen amendments improved the net GHG benefits by 2.6 Mg ha−1 y−1 and 9.4 Mg ha−1 y−1 as CO2eq relative to the control. Results suggest that N fertilization of switchgrass in this region could reduce (15-50%) the land base needed for bioenergy production and decrease pressure on land for food and forage crop production.  相似文献   

13.
Understanding the growth of white clover (Trifolium repens L.) under varying management regimes and weather conditions will aid producers in making sound decisions on the utilization of this crop. The objectives of this study were to determine the effect of harvest frequencies on white clover forage biomass potential, theoretical ethanol yield, crude protein (CP) concentration, and in vitro digestible organic matter (IVDOM). Frequency of forage removal (treatment), year, and treatment × year interactions significantly affected forage quantity and quality. This 4-year study indicated that forage dry matter (DM) yield, theoretical ethanol yield, CP concentration, and IVDOM with four harvests (15 May, 1 and 15 June, and 1 July) or two harvests (15 May, and 15 June) were consistently better than the other one, two, or three harvest systems. Four harvests yielded on average 2380 ± 80 kg ha−1 (a theoretical ethanol yield of 570 ± 20 L ha−1) with 540 kg ha−1 of CP and 1780 kg ha−1 of digestible DM. Forage removed with two harvests (15 May and 15 June) yielded on average 2200 ± 80 kg ha−1 (a theoretical ethanol yield of 530 ± 20 L ha−1) with 490 kg ha−1 of CP and 1640 kg ha−1 of digestible DM. A two harvest system would reduce harvest costs over that of a four harvest system and would allow for two haying or grazing rotations (each with 28–30 day rest) before a decline of white clover DM production in mid-summer.  相似文献   

14.
《Biomass & bioenergy》2000,18(2):105-112
One approach to reducing the concentration of atmospheric carbon dioxide, which is a dominant greenhouse gas, is to develop renewable energy sources from biofuel crops. Switchgrass, (Panicum virgatum L.) as an energy crop, can partly mitigate potential global warming by supplementing fossil fuels and sequestering carbon (C). Although switchgrass grown for energy may impact C sequestration via the input of root biomass, information on the impact of soil management on switchgrass root growth is extremely limited. We determined the influence of row spacing, nitrogen (N) rate, switchgrass cultivar, and soil type on switchgrass root characteristics. Roots were mainly distributed in the surface soil (0–15 cm), and were 90.4 and 68.2% of the total in the intrarow and interrow profile, respectively. Nitrogen application altered root N but not C concentration, implying that any increase in C sequestration by switchgrass roots will be due to increased root biomass rather than increased C concentration. Root weight density generally decreased in the interrow with wider row width, and N application generally did not affect root weight density. Root weight density in the Pacolet soil was higher than in the other four soils, and root density was 4.1 times higher in the Pacolet soil than in the Norfolk soil. Root mass in the Pacolet soil (36,327 kg ha−1) was 2.7 times greater than that found in the Norfolk soil (13,204 kg ha−1) within 150 cm of the soil surface. Differences in root characteristics were found among cultivars: root weight density with ‘Cave-in-Rock’ switchgrass was 29.4 and 47.6% higher than ‘Alamo’ and ‘Kanlow’, respectively. Variations in switchgrass root biomass production owing to soil type and cultivar suggest that site and cultivar selection will be important determinants of C sequestration by switchgrass roots. A potential benefit of switchgrass is the reduced loss of nutrients associated with non-point pollution, owing to its deep root system that may extend 330 cm below the soil surface.  相似文献   

15.
Tropical forests store higher above ground biomass (AGB) and AGB carbon (AGBC) than any other forest ecosystems. In the present study the tree composition, diversity, dominance and carbon stocks in the AGB and soil of tropical forests viz., the Gibbon wildlife sanctuary (GWS) and the Kholahat reserve forest (KRF) of Assam, India were assessed. Soil sampling, tree survey, girth above 1.3 m height of plants >10 cm girth of plants were assessed in 1000 m2 quadrate. Allometric model for moist forest stands was used to determine AGB and AGBC. A total of 71 and 108 different tree species belong to 32 and 42 families were found in the GWS and KRF, respectively. In the GWF, the Shannon diversity index (1.22) and the Simpson index (0.085) were significant, while for the KRF these indices were insignificant. The basal area, AGB and AGBC in the GWS and KRF were 62.49–90.29 m2 ha−1, 135.30–146.42 Mg ha−1, and 67.64–73.21 Mg ha−1, respectively. The average soil carbon stock (SOC) in the upper, middle and lower layers was 57.74–78.44 kg m−2, 39.22–64.93 kg m−2 and 30.32–42.86 kg m−2, respectively, in the GWS and KRF. However, compared to GWS, a higher AGB and AGBC were found in KRF. This finding reveals that the higher AGB, AGBC and SOC in the KRF were due to old growth matured forest with big and diverse tree species.  相似文献   

16.
From 2006 to 2009, block template experiments were conducted to evaluate the biomass yield of four crop species—Amur silvergrass, Giant Miscanthus, Virginia fanpetals, and two Basket willow clones—at the University of Life Science, Lublin, Poland. The dry matter (d m) yields and number of shoots were determined each November, while biomass moisture levels were determined every November and March. The averages of the 4-year research datasets indicated that Giant Miscanthus produced the greatest biomass (16.5 t ha−1 d m), while the two Basket willow clones (8.8–10.2) t ha−1 d m, and Amur silvergrass (6.2 t ha−1 d m) produced the lowest biomass. The mean yield of Virginia fanpetals was 13.0 t ha−1 d m. The largest number of shoots per one m2 were produced by Miscanthus species (55 units), with Basket willow and Virginia fanpetals producing half this amount (24–28 units). Similar moisture levels were obtained for Basket willow biomass harvested in autumn (49.5–54.6)% and winter (48.4–49.7)%. The biomass moisture levels of the other species in March was approximately two times lower (14–29)% than that in November (27–70)%.In a second experiment, the effect of varying plant density (10 000 and 30 000 plants per ha) on the yield of Giant Miscanthus was investigated. Double the biomass yield was obtained in crops with a density of 30 000 plants per hectare compared to 10 thousand. The higher yields were accompanied by larger, heavier, taller, but thinner shoots.  相似文献   

17.
Biomass production in arid and semi-arid regions requires a special attention owing to spatiotemporal scarcity of irrigation water wherein improved water use efficiency (WUE) of the crop is targeted. Under field conditions, the crop undergoes dynamic changes in near ground or within-canopy microenvironments. This changed microclimatic condition may have an impact on phenological response of the oilseed crop which in turn would affect biomass productivity, economic seed yield and water use efficiency of the crop. Henceforth, quantification of biomass production and its WUE of oilseed Brassica crop is essentially required owing to have better understanding of the crop water requirement under the era of climate change. Following a 2 years field experiment, it was revealed that the changes in leaf area index were explained by about 68–74%. The best fit polynomial third order regression analysis indicated >93% prediction in biomass production as a function of time factor. Improved biomass partitioning into economic sinks was also observed. Small scale change in near ground microenvironment may reduce the prediction of biomass variability to the extent of 3%. The mean ET variations were observed as 2.4, 1.5 and 3.2 mm day−1 during the critical phenological stages. Mean seed yield, biomass WUE and seed yield WUE ranged between 2.71 and 2.87 Mg ha−1, 11.4 and 13.1 g m−2 mm−1 and 19.3 and 22.9 kg ha−1 mm−1 respectively. Variations in both biomass and seed yield water use efficiencies due to small scale change in near ground microclimates were revealed.  相似文献   

18.
An understanding of how Jatropha curcas seed yield relates to vegetative plant components under different management regimes is lacking. Such information is necessary to predict yields and design management strategies. This study investigated yield and vegetative plant component interactions, and the effects of management practices in monoculture, intercropping, and hedge cropping systems in Indonesia. Monoculture and intercropping experiments in Gunungkidul Regency used jatropha IP-1M material; hedge experiments in Sumbawa Regency used the Sumbawa provenance. In two-year-old monoculture, pruning significantly decreased yield from 109 kg ha−1 to 28 kg ha−1 due to a 40% decrease in canopy volume and LAI. In four-year-old jatropha intercropping, root barriers reduced yields 80% by limiting jatropha root access to soil moisture and nutrients in the maize plantings. Intercropping without root barrier and with leaf mulch produced the largest yields of 25 kg ha−1. In hedge plantings, plant height influenced yield. Single rows of one-year-old monoculture produced 0.97 g m−1 at 10 cm spacing, 1.69 g m−1 at 30 cm, and 0.14 g m−1 for 20 cm of mixed jatropha–gliricidia. Pruning significantly decreased LAI with 20 cm spacing indicating a higher proportion of above-ground biomass allocated for wood growth. Results indicate that seed yield across the three cropping systems can be determined by plant height and numbers of productive twig/branch, although number of inflorescences cluster per productive twig may be more important. Future research should focus on the transition of branches to reproductive phases, and on increasing numbers of productive twigs/branches and inflorescence clusters.  相似文献   

19.
The use of organic waste materials as nutrient sources for willow biomass production is an attractive means to decrease fertilization costs, increase biomass production and reduce greenhouse gas emissions associated with the system. In this study, changes in soil nutrients and biomass production of two willow varieties (Salix miyabeana–SX64 and Salix purpurea–9882-34) in organic and synthetic fertilized systems were compared at three locations in Northeastern U.S.A: Middlebury VT (MID), Delhi NY (DEL) and Fredonia NY (FRE). A 150 and 200 kg available N ha−1 of urea as commercial fertilizer (CF), biosolid compost (BC) and digested dairy manure (DM) and a control (CT0) treatments were applied in June 2008 to the willow which was re-sprouting after coppice. There was no significant difference (p > 0.05) in biomass production among the fertilization treatments at any of the three sites and for either of the varieties. First rotation biomass production of 9882-34 ranged from 9.0 to 11.6 Mg ha−1 yr−1 at DEL, 3.4–8.8 Mg ha−1 yr−1 at MID and 3.5–7.7 Mg ha−1 yr−1 at FRE. For SX64, biomass production ranged from 13.2 to 19.0 Mg ha−1 yr−1 at DEL, 9.0–15.0 Mg ha−1 yr−1 at Mid and 5.5–9.3 Mg ha−1 yr−1 at FRE. SX64 deployed small numbers of large stems and produced more biomass than 9882-34 which deployed large numbers of small stems. Application of BC significantly increased soil N and P levels at MID in both 2008 and 2009 (p < 0.05). At DEL, BC and DM treatments increased soil N, Ca, Mg and OM levels in both 2008 and 2009 (p < 0.05). The fertilization treatments had no significant effect on any soil nutrients at FRE. This study indicates that willow biomass can be produced without fertilizer additions in the first rotation across this range of sites due to the nutrient status of these sites and high internal nutrient cycling in these systems.  相似文献   

20.
Napiergrass (Cenchrus purpureus (Schumach.) Morrone) and energycane (Saccharum hyb.) are perennial grasses that are well-suited for biomass production in the southeastern USA. The purpose of this study was to determine the effects of delayed winter harvest on biomass yield and quality of these grasses. The study was conducted on two adjacent sites near Midville, GA. Each site used a split-plot design with four replications, with species as the main plot, and harvest times (December, January, or February) as sub-plots. Dry matter (DM) yields were measured by mechanical harvesting, and a sample of biomass was taken from each harvest for determination of ethanol production by simultaneous saccharification and fermentation (SSF). Biomass moisture, N, P, K, and ash mass fractions were also measured. Energycane DM yields were stable from December (46.8 Mg ha−1) to January (42.9 Mg ha−1), but then declined (36.8 Mg ha−1), while napiergrass yields declined sharply from December (47.0 Mg ha−1) to January (35.0 Mg ha−1). Napiergrass moisture mass fraction was reduced by an average of 18% in February harvests compared to December. Mass fractions of N, K, and ash tended to decrease with later harvesting, but sometimes increased due to changes in biomass composition. Delaying harvest of napiergrass from December to January reduced N removal by an average of 144 kg ha−1, while delaying harvest of energycane to February reduced N removal by an average of 54 kg ha−1. In SSF, later-harvested energycane produced less ethanol per unit of DM while napiergrass was less affected by harvest date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号