首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for fabricating glass fiber composite sandwich panel with pyramidal truss cores was developed based on the vacuum assisted resin transfer molding technology. The microstructure and organizations of fabricated sandwich panels were examined by the scanning electron microscope. The out-of-plane compressive tests of composite sandwich panels were performed throughout the temperature range from −60 °C to 125 °C. Then the effects of temperature on the compressive strength, compressive modulus and failure mechanism were investigated and analyzed. Our results indicated that cryogenic temperature resulted in the increasing of the compressive modulus and strength, while high temperature caused the degradation of the compressive modulus and strength. The effect of temperature on failure mode of composite sandwich panel was also observed. Analytical expressions were presented to predict the compressive modulus and strength of composite sandwich panels at different temperatures.  相似文献   

2.
The objective of study was to evaluate some of the physical and mechanical properties of medium density fiberboard (MDF) panels laminated with veneer sheets compressed at different levels of pressure and temperature. Rotary peeled veneer samples of European beech (Fagus orientalis Lipsky) were compressed at temperatures of 150 °C, 180 °C, and 200 °C using 4 MPa and 6 MPa pressure for 8 min. Commercially produced MDF samples also were laminated with such compressed veneer sheets. Both modulus of elasticity (MOE) and modulus of rupture (MOR) of the specimens increased with increasing pressure and press temperature. Bending characteristics of the samples tested parallel to the grain orientation resulted in significantly higher values than that perpendicular to the grain orientation for each manufacturing parameter. Thickness swelling of the samples also was influenced by increased pressure but variation in press temperature did not result in any influence on dimensional stability. The findings of this work provide potential to produce sandwich type panels with improved properties. Initial results found in this study could be used to manufacture laminated panels with a fixed rate of adhesive while controlling press parameters as a function of the magnitude of pressure and temperature.  相似文献   

3.
An actively cooled vascular polymer matrix composite containing 3.0% channel volume fraction retains greater than 90% flexural stiffness when exposed continuously to 325 °C environmental temperature. Non-cooled controls suffered complete structural failure through thermal degradation under the same conditions. Glass–epoxy composites (Tg = 152 °C) manufactured by vacuum assisted resin transfer molding contain microchannel networks of two different architectures optimized for thermal and mechanical performance. Microchannels are fabricated by vaporization of poly(lactide) fibers treated with tin(II) oxalate catalyst that are incorporated into the fiber preform prior to resin infiltration. Flexural modulus, material temperature, and heat removal rates are measured during four-point bending testing as a function of environmental temperature and coolant flow rate. Simulations validate experimental measurements and provide insight into the thermal behavior. Vascular specimens with only 1.5% channel volume fraction centered at the neutral bending axis also retained over 80% flexural stiffness at 325 °C environmental temperature.  相似文献   

4.
Thermal degradation behaviors of the poly(p-phenylene benzobisoxazole) (PBO) fiber and phenolic resin matrix were investigated. The unidirectional PBO fiber reinforced phenolic resin composite material laminates were fabricated and exposed in a muffle furnace of 300 °C, 550 °C, 700 °C, and 800 °C for 5 min, respectively, to study the effects of thermal treatment on mechanical properties of the composites. After undergone thermal treatments at 300 °C, 550 °C and 700 °C for 5 min, the flexural strength was reduced by 17%, 37% and 80%, respectively, the flexural modulus was decreased by 5%, 14% and 48%, respectively, and the interlaminar shear strength (ILSS) was lowered by 12%, 48% and 80%, respectively. Thermal treatment at 300 °C, the phenolic resin began to pyrolyze and shrink resulted in the irreversible damage of the composites. After 550 °C thermal treatment, the phenolic resin pyrolyzed mostly but the PBO fiber had no obvious pyrolyze, the interface had sever broken. After 700 °C thermal treatment, the phenolic resin formed amorphous carbonaceous and PBO fiber pyrolyzed mostly so the mechanical properties dropped dramatically. At being heated at 800 °C for 5 min, the fiber was nearly totally pyrolyzed and and kept fibrous carbonaceous although the specimen became too brittle to stand any load thereon.  相似文献   

5.
A study on the mechanical property degradation of carbon fiber composite sandwich panel with pyramidal truss cores by high temperature exposure is performed. Analytical formulae for the residual bending strength of composite sandwich panel after thermal exposure are presented for possible competing failure modes. The composite sandwich panels were fabricated from unidirectional carbon/epoxy prepreg, and were exposed to different temperatures for different time. The bending properties of the exposed specimens were measured by three-point bending tests. Then the effect of high temperature exposure on the bending properties and damage mechanism were analyzed. The results have shown that the residual bending strength of composite sandwich panels decreased with increasing exposure temperature and time, which was caused by the degradation of the matrix property and fiber-matrix interface property at high temperature. The effect of thermal exposure on failure mode of composite sandwich panel was observed as well. The measured failure loads showed good agreement with the analytical predictions. It is expected that this study can provide useful information on the design and application of carbon fiber composite sandwich panel at high temperature.  相似文献   

6.
This study investigates characteristics of foreign-object damage in plain-woven SiC/SiC composites after thermal loading. High-speed impact tests were conducted on virgin specimens, thermally exposed specimens, and thermally shocked specimens, in which the maximum temperature during thermal loading was 600 °C or 1000 °C. An oxide layer was generated on the specimen surface by thermal loading at 1000 °C. Damaged areas on the front and back surfaces induced by particle impact were independent of thermal loading. However, in specimens thermally loaded at 1000 °C, brittle failure, i.e. cone cracking without fiber pull-out, occurred due to oxidation of the fiber/matrix interfaces, and the ballistic limit velocity significantly decreased. Finally, the ballistic limit is predicted using static strength properties, and the effect of thermal loading on impact resistance is discussed.  相似文献   

7.
《Composites Part B》2013,44(8):3288-3292
This study presents some of the properties of sandwich type of panels made from strands of low quality eastern redcedar (Juniperus virginiana L.) logs and Southern pine fibers. Experimental panels were made at three density levels of 0.60 g/cm3, 0.70 g/cm3 and 0.80 g/cm3 using 9% phenol formaldehyde adhesive based on oven dry weight of the raw material. Mechanical properties including modulus of elasticity, modulus of rupture and internal bond strength of three layer panels in addition to their thickness swelling characteristics were evaluated. Both modulus of elasticity and modulus of rupture of the samples improved with increasing panels density. Thickness swelling of the samples for 2-h and 24-h water soaking ranged from 8.33% to 23.90%. Both physical and mechanical properties of the panels showed acceptable and comparable results to those found in past studies used eastern redcedar and other species to manufacture strand type of product. Having fiber layers on the surface of the panels resulted in smooth surface to comparable to that of typical medium density fiberboard with an average roughness value of 6.42 μm. Based on initial findings of this study it appears that eastern redcedar which is an under-utilized invasive resource can have a potential to be used as raw material for sandwich type panel manufacture.  相似文献   

8.
This study presents some of the properties of sandwich type of panels made from strands of low quality eastern redcedar (Juniperus virginiana L.) logs and Southern pine fibers. Experimental panels were made at three density levels of 0.60 g/cm3, 0.70 g/cm3 and 0.80 g/cm3 using 9% phenol formaldehyde adhesive based on oven dry weight of the raw material. Mechanical properties including modulus of elasticity, modulus of rupture and internal bond strength of three layer panels in addition to their thickness swelling characteristics were evaluated. Both modulus of elasticity and modulus of rupture of the samples improved with increasing panels density. Thickness swelling of the samples for 2-h and 24-h water soaking ranged from 8.33% to 23.90%. Both physical and mechanical properties of the panels showed acceptable and comparable results to those found in past studies used eastern redcedar and other species to manufacture strand type of product. Having fiber layers on the surface of the panels resulted in smooth surface to comparable to that of typical medium density fiberboard with an average roughness value of 6.42 μm. Based on initial findings of this study it appears that eastern redcedar which is an under-utilized invasive resource can have a potential to be used as raw material for sandwich type panel manufacture.  相似文献   

9.
《Composites Part B》2002,33(4):315-324
Rectangular orthotropic fiber-reinforced plastic (FRP) sandwich panels were tested for buckling in uni-axial compression. The panels, with 0.32 cm (0.125 in.) face sheets and a 1.27 cm (0.5 in.) core of either balsa or linear poly(vinyl chloride) (PVC) foam, were tested in two sizes: 154×77 cm2 (72×36 in.2) and 102×77 cm2 (48×36 in.2). The sandwich panels were fabricated using the vacuum-assisted resin transfer molding process. The two short edges of the sandwich panels were clamped, while the two long edges were simply supported for testing. The clamped panel ends were potted into a steel frame. The experimental elastic buckling loads were then measured using strain gauges fixed to both sides of the panels. A total of 12 panels were tested under uni-axial compression. Bifurcation in the load versus engineering strain curve was noted in all cases. For all six sandwich panels tested using balsa core, the type of failure was easily identified as face sheet delamination followed by core shear failure. For all six PVC foam core sandwich panels tested, the type of failure consisted of core shear failure with little or no face sheet delamination. In the failed balsa core panels there was little or no evidence of balsa remaining on the FRP face sheet, however, in the PVC foam core panels there were ample amounts of foam left on the FRP face sheet. It was concluded that although the buckling loads for the foam core panels were not as high as those for the balsa core panels, PVC foam core bonding to the FRP face sheets was superior to balsa core bonding.  相似文献   

10.
This paper reports the high-strain rate properties of 3-D braided basalt/epoxy composite materials at 26 °C, −50 °C, −100 °C and −140 °C with strain-rate range from 1300 s−1 to 2100 s−1 by experimental study. A simple and effective cryogenic device was applied to the SHPB system to create the low-temperature field of the samples. It was found that the compression modulus, peak stress, failure strain and specific energy absorption of the 3-D braided basalt/epoxy composite materials had different sensitivity to temperatures and strain rates. In the out-of-plane impact, there were two failure modes, namely, compression-failure mode and shear-failure mode. Fracture of fiber tows was irregular with abundant pull-out of fiber and much finely-divided fragmentation of resin among fibers at room temperature. In cryogenic field, the fracture of fiber tows was neat and tidy with few pull-out of fiber and few finely-divided fragmentation of resin. However, in the in-plane impact, there was only compression failure mode. And there was no fracture of fiber tows and no big difference among samples tested under different gas pressures. Because of the function of squeezing and buckling, split-off separation of the composite could be blocked by the tangled fiber tows. As a whole, the reinforcement could still keep its structural integrity.  相似文献   

11.
C/SiC composite sandwich structure with stitched lattice core was fabricated by a technique that involved polymer impregnation and interweaving. The mechanical behaviors of C/SiC composite sandwich structure were investigated at room temperature. The out-of-plane compressive strength was 20.97 MPa while modulus was 1473.55 MPa. The microstructural evolution on compression fracture surfaces of the stitching yarns was investigated by scanning electron microscopy, and the damage pattern of fibers on compression fracture surface was presented and discussed. Under an in-plane compression loading, the C/SiC composite sandwich structure displayed a linear-elastic behavior until failure. The peak strength and average modulus are 165.61 MPa and 19.74 GPa, respectively. The failure of the specimen was dominated by the fracture of the facesheet.  相似文献   

12.
This paper investigates the residual tensile properties of newly developed glass fiber reinforced polymer (GFRP) bars after being subjected to elevated temperatures for different periods. A total of 120 GFRP specimens were tested in this study. Half of the samples were covered with concrete while the other half were bare bars. The specimens were subjected to three different controlled temperatures (100, 200 and 300 °C) for three different periods (1, 2, and 3 h). Test results showed that almost no losses were observed in the tensile modulus after all exposure periods and temperatures. Losses in the tensile strength, proportional to the level of temperature and exposure period, were recorded. The bars with concrete cover showed higher residual tensile strength compared to their counterparts without coating. The concrete cover was more effective at the lowest temperature level (100 °C) and at the shortest time period (1 h). Scanning Electronic Microscopy (SEM) technique was also used to investigate the effect of elevated temperature on the degradation mechanism of the GFRP bars. The results showed that increasing the temperature level affected the resin matrix surrounding the glass fibers and consequently affected the bond between the fibers and the matrix.  相似文献   

13.
The effects of extrusion processing temperature on the rheological, dynamic mechanical analysis and tensile properties of kenaf fiber/high-density polyethylene (HDPE) composites were investigated for low and high processing temperatures. The rheological data showed that the complex viscosity, storage and loss modulus were higher with high processing temperature. Complex viscosities of pure HDPE and 3.4 wt% composite with zero shear viscosity of ⩽2340 Pa s were shown to exhibit Newtonian behavior while composites of 8.5 and 17.5 wt% with zero shear viscosity ⩾30,970 Pa s displayed non-Newtonian behavior. The Han plots revealed the sensitivity of rheological properties with changes in processing temperature. An increase in storage and loss modulus and a decrease in mechanical loss factor were observed for 17.5 wt% composites at high processing temperature and not observed at low processing temperature. Processing at high temperature was found to improve the tensile modulus of composites but displayed diminished properties when processed at low processing temperature especially at high fiber content. At both low and high processing temperatures, the tensile strength and strain of the composite decreased with increased content of the fiber.  相似文献   

14.
This paper reports the accelerated thermal ageing behaviors of pure epoxy resin and 3-D carbon fiber/epoxy braided composites. Specimens have been aged in air at 90 °C, 110 °C, 120 °C, 130 °C and 180 °C. Microscopy observations and attenuated total reflectance Fourier transform infrared spectrometry analyses revealed that the epoxy resin oxidative degradation only occurred within the surface regions. The surface oxidized layer protects inner resin from further oxidation. Both the resin degradation and resin stiffening caused by post-curing effects will influence the compression behaviors. For the braided composite, the matrix ageing is the main ageing mode at temperatures lower than glass transition temperatures (Tg) of the pure epoxy resin, while the fiber/matrix interface debonding could be observed at the temperatures higher than Tg, such as the temperature of 180 °C. The combination of matrix degradation and fiber/resin interface cracking leads to the continuous reduction of compressive behaviors.  相似文献   

15.
C/SiC–ZrB2 composites prepared via precursor infiltration and pyrolysis (PIP) were treated at high temperatures ranging from 1200 °C to 1800 °C. The mass loss rate of the composites increased with increasing annealing temperature and the flexural properties of the composites increased initially and then decreased reversely. Out of the four samples, the flexural strength and the modulus of the specimen treated at 1400 °C are maximal at 216.9 MPa and 35.5 GPa, suggesting the optimal annealing temperature for mechanical properties is 1400 °C. The fiber microstructure evolution during high-temperature annealing would not cause the decrease of fiber strength, and moderate annealing temperature enhanced the thermal stress whereas weakened the interface bonding, thus boosting the mechanical properties. However, once the annealing temperature exceeded 1600 °C, element diffusion and carbothermal reduction between ZrO2 impurity and carbon fibers led to fiber erosion and a strong interface, jeopardizing the mechanical properties of the composites. The mass loss rate and linear recession rate of composites treated at 1800 °C are merely 0.0141 g/s and 0.0161 mm/s, respectively.  相似文献   

16.
In the present study, amino-silane modified layered organosilicates were used to reinforce cyclic olefin copolymer to enhance the thermal, mechanical and moisture impermeable barrier properties. The optimum clay loading (4%) in the nanocomposite increases the thermal stability of the film while further loading decreases film stability. Water absorption behavior at 62 °C was carried out and compared with the behavior at room temperature and 48 °C. The stiffness of the matrix increases with clay content and the recorded strain to failure for the composite films was lower than the neat film. Dynamic mechanical analysis show higher storage modulus and low loss modulus for 2.5–4 wt% clay loading. Calcium degradation test and device encapsulation also show the evidence of optimum clay loading of 4 wt% for improved low water vapor transmission rates compared to other nanocomposite films.  相似文献   

17.
《Composites Part B》2007,38(5-6):535-546
The behavior of reinforced concrete panels, or slabs, retrofitted with glass fiber reinforced polymer (GFRP) composite, and subjected to blast load is investigated. Eight 1000 × 1000 × 70 mm panels were made of 40 MPa concrete and reinforced with top and bottom steel meshes. Five of the panels were used as control while the remaining four were retrofitted with adhesively bonded 500 mm wide GFRP laminate strips on both faces, one in each direction parallel to the panel edges. The panels were subjected to blast loads generated by the detonation of either 22.4 kg or 33.4 kg ANFO explosive charge located at a 3-m standoff. Blast wave characteristics, including incident and reflected pressures and impulses, as well as panel central deflection and strain in steel and on concrete/FRP surfaces were measured. The post-blast damage and mode of failure of each panel was observed, and those panels that were not completely damaged by the blast were subsequently statically tested to find their residual strength. It was determined that overall the GFRP retrofitted panels performed better than the companion control panels while one retrofitted panel experienced severe damage and could not be tested statically after the blast. The latter finding is consistent with previous reports which have shown that at relatively close range the blast pressure due to nominally similar charges and standoff distance can vary significantly, thus producing different levels of damage.  相似文献   

18.
《Composite Structures》2012,94(1):102-113
A light-weight hot pad system for curing large area adhesive films for the secondary barrier of cryogenic cargo containments of Liquefied Natural Gas (LNG) has been developed with a composite sandwich panel.In order to apply uniform pressure to the adhesive on unlevel insulation panels and to obtain an adequate adhesive thickness, a flexible stainless steel foil heater supported by a butyl rubber air pressure bag has been utilized for the lower part of the hot pad system, and a temperature controller provides reliable curing of the adhesive. To decrease the weight of the hot pad system and mitigate heat loss through the pad, the upper part of the hot pad system has been built with a composite sandwich panel composed of glass fiber epoxy composite face, polystyrene (PS) and polyvinyl chloride (PVC) foam cores with low thermal conductivity.Through finite element analysis and experimentation on hot pad systems, a light-weight hot pad system that is able to cure a 0.3 m by 3.5 m area has been developed with an autoclave cure quality.  相似文献   

19.
This paper presents long term durability prediction of 0–5 wt.% nanoclay/vinylester/glass fibre nanocomposites based on their tensile strength retention in accelerated hygrothermal ageing using Arrhenius rate model. The specimens were exposed to 30 °C, 50 °C and 60 °C and 95% relative humidity for 75 days and tested for tensile strength retention as a function of duration of exposure. The predicted tensile strength retentions for one year of ageing of vinylester/glass at 30 °C, 50 °C and 60 °C using Arrhenius rate model were 59%, 48% and 43% respectively. The corresponding strength retentions predicted for 4 wt.% nanoclay/vinylester/glass were 81.1%, 77.9% and 76.4%. Strength retentions for ten years were predicted using the analytical model to assess their long-term performance.  相似文献   

20.
High temperature shape memory alloys with operating temperatures above 100 °C are in demand for use as solid-state thermal actuators in aerospace, automobile and other engineering applications. The present study deals with transformation behaviour and thermal stability of Ni24.7Ti50.3Pd25.0 (at.%) high temperature shape memory alloy, in cast and homogenized condition. The martensite finish temperature and transformation hysteresis of the alloy were determined to be 181.0 °C and ∼8.5 °C respectively. The alloy showed high stability upon stress-free thermal cycling, variation in transformation temperatures being ±1 °C. The narrow thermal hysteresis and high thermal stability of the alloy upon transformation cycling has been discussed and correlated with its microstructural features, activation energy and elastic strain energy of thermoelastic martensitic transformation. The alloy exhibited modulus of ∼82 GPa and hardness of ∼4.7 GPa in martensite phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号