首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nova Scotia, Canada's community feed-in tariff (COMFIT) scheme is the world's first feed-in tariff program specifically targeting locally-based renewable energy projects. This study investigated selected turbine capacities to optimize electricity production, based on actual wind profiles for three sites in Nova Scotia, Canada (i.e., Sydney, Caribou Point, and Greenwood). The turbine capacities evaluated are also eligible under the current COMFIT-large scheme in Nova Scotia, including 100 kW, 900 kW and 2.0 MW turbines. A capital budgeting model was developed and then used to evaluate investment decisions on wind power production. Wind duration curves suggest that Caribou Point had the highest average wind speeds but for shorter durations. By comparison, Sydney and Greenwood had lower average wind speeds but with longer durations. Electricity production cost was lowest for the 2.0 MW turbine in Caribou Point ($0.07 per kWh), and highest for the 100 kW turbine located in Greenwood ($0.49 per kWh). The most financially viable wind power project was the 2.0 MW turbine assumed to operate at 80 m hub height in Caribou Point, with NPV=$251,586, and BCR=1.51. Wind power production for the remaining two sites was generally not financially feasible for the turbine capacities considered. The impact of promoting local economic development from wind power projects was higher in a scenario under which wind turbines were clustered at a single site with the highest wind resources than generating a similar level of electricity by distributing the wind turbines across multiple locations.  相似文献   

2.
Wind energy development has become a ‘hot topic’ across Michigan as this state seeks to achieve 10% of energy delivered to consumers from renewable sources (Huron County Planning Commission, 2005). The focus of this effort to generate renewable energy has centered around wind energy. Wind turbines have been constructed at numerous locations across the state. The lower peninsulas' eastern counties near Lake Huron and Saginaw Bay were designated by the Wind Energy Resource Zone board as one such area of strong sustained wind in the state. Turbines have been constructed in ‘pockets’ across this ‘thumb’ region, yet half a decade after the first turbines were constructed, negative perceptions are still attributed to wind turbines. This paper examines residents of wind farm locations as a whole and independently as groups (those in opposition and in support of development) to identify what, if any similarities and differences, exist between the residents' perceptions. Qualitative analysis on stated negative perceptions unveiled common issues with residents: increased price of electricity with wind energy, noise from the turbine rotation and uncertainty surrounding the long term effects of wind turbines. These areas of concern seem to persist years after construction was completed.  相似文献   

3.
It is likely that intermittent renewable sources such as wind and solar will provide the greatest opportunity for future large-scale hydrogen production. Here, on-shore wind is examined. Global wind energy is estimated by placing one 2 MW turbine/km2 over the surface of the earth. Wind energy production is based on monthly mean wind speed data. Wind turbines are grouped to form arrays that are linked to local hydrogen generation and transmission networks. Hydrogen generation is done via low-pressure electrolysis and transmission via high-pressure gas pipelines. The wind/hydrogen system is considered within a global energy system that must not only provide hydrogen, but also energy for electricity consumption at the local generation site. The technical potential of the hydrogen produced is estimated to be 116 EJ. Uneven distribution of the hydrogen-rich sites results in the need to export much of the hydrogen produced to energy-poor regions. To overcome system losses, a combined wind/HVDC/hydrogen system is considered.  相似文献   

4.
In this paper, five typical regions of Algeria where wind is strong enough are selected. These regions usually intended for traditional agriculture are, centred around the towns of Guelma, El Oued, Tindouf, Touggourt and Tamanrasset. To make wind energy conversion available as an alternative energy source for the populations living in such countries, nine types of small and medium wind turbines constructed by American and European manufacturers are studied for their suitability. To account for the wind variations with height, four possible heights of the pylon holding the turbines are considered: 10, 20, 40 and 60 m. In each of the five locations and at each pylon height, wind energy converted by the turbines, is cumulated over the year and computed. Depending on the site and their size, most of these turbines are found to produce about 1000–10,000 MWh of electricity per year at 60 m of altitude and can easily satisfy the electricity need in irrigation and its household applications in rustic and arid regions. A quick glance of the results of the above computation shows that the choice of pylons of 20 m height yields a trade-off between the production of electrical energy and the requirements of economy. Owing to the sporadic wind variations, wind energy conversion systems can only be used as an auxiliary source. In particular, these systems can advantageously be coupled to stand-alone photovoltaic conversion systems in remote locations or connected to the electric mains in urban zones.  相似文献   

5.
Wind data from 10 coastal meteorological stations along the Mediterranean Sea in Egypt have been used for statistical analysis to determine the wind characteristics. It was found that three stations show annual mean wind speed greater than 5.0 m/s. In order to identify the Weibull parameters for all stations two different methods were applied.The methodical analysis for all stations was done for the corrected monthly and annual mean wind power at a height of 10 m, over roughness class 0 (water). The recommended correlation equation was also stated for Mediterranean Sea zone in Egypt. Also the wind power densities for heights of 30–50 m were calculated for all stations. Three of them are the best locations, namely: Sidi Barrani, Mersa Matruh, and El Dabaa, where these contiguous stations have great abundantly wind energy density.A technical assessment has been made of the electricity generation using WASP program for two commercial turbines (300 kW and 1 MW) considering at the three promising sites. The wind turbine of capacity 1 MW was found to produce an energy output per year of 2718 MW h at El Dabaa station, and the production costs was found 2€ cent/kW h.  相似文献   

6.
This paper presents a technical assessment of wind power potential for seven locations in Jordan using statistical analysis to determine the wind characteristic based on the measured wind data. Rayleigh distribution is used to model the monthly average data and used to estimate the wind power in the selected locations. Energy calculations, capacity factors and cost of wind energy production were determined for the selected locations with wind machines of different sizes ranging between 1.65 MW and 3 MW. The quantitative estimates of the technical and economic potential are presented graphically. Rayleigh parameter is adjusted to the hub height using one seventh power law to estimate the power output of the machine. The energy cost analyses show that all selected sites have high economic potential with unit cost less than $0.04/kWh of electricity. The lowest unit cost per kWh is obtained by using GE 2.5 MW at Tafila site. Finally, the results of this study reveal that Jordan has high potential wind energy and its environmental and energy policy targets can be met by exploitation wind energy.  相似文献   

7.
The transition to a low carbon energy portfolio necessitates a reduction in the demand of fossil-fuel and an increase in renewable energy generation and penetration. Wind energy in particular is ubiquitous, yet the stochastic nature of wind energy hinders its wide-spread adoption into the electric grid. Numerous techniques (improved wind forecasting, improved wind turbine design and improved power electronics) have been proposed to increase the penetration of wind energy, yet only a few have addressed the challenges of wind intermittency, grid stability and flexibility simultaneously. The problem of excess wind energy results in wind curtailment and has plagued large scale wind integration. NREL's HOMER software is used to show that a strong negative correlation exists between the cycles to failure of a storage device and the excess wind energy on the system. A 1 MJ magnesium-diboride superconducting magnetic energy storage (SMES) system is designed to alleviate momentary interruptions (lasting from a few milli-seconds to a few minutes) in wind turbines. The simulation results establish the efficacy of SMES coupled with wind turbines improve output power quality and show that a 1 MJ SMES alleviated momentary interruptions for ∼50 s in 3 MW wind turbines. These studies suggest that SMES when coupled to wind turbines could be ideal storage devices that improve wind power quality and electric grid stability.  相似文献   

8.
In the present study, a novel procedure is introduced for the optimal placement and arrangement of wind turbines in a wind park. In this approach a statistical and mathematical method is used, which is called ‘Monte Carlo simulation method’. The optimization is made by the mean of maximum energy production and minimum cost installation criteria. As a test case, a square site is subdivided into 100 square cells that can be possible turbine locations and as a result, the program presents us the optimal arrangement of the wind turbines in the wind park, based on the Monte Carlo simulation method. The results of this study are compared to the results of previous studies that handle the same issue.  相似文献   

9.
Wind turbines are used in a variety of applications with different performance requirements. Investigating the influence of scaling on wind turbine characteristics can pave the way to utilize the experience gained from a smaller turbine for a larger one. In this paper, the effects of wind turbine size on aerodynamic characteristics of a rotor blade are examined using CFD simulation. NREL phase VI wind turbine rotor was simulated in order to validate the results and ensure the accuracy of the CFD model. A 2 MW wind turbine was then chosen as a large turbine and a scaled down model of its rotor was simulated numerically. The results of the simulation were introduced to Similarity Theory relations in order to predict the aerodynamic characteristics of the 2 MW wind turbine. The 2 MW turbine was also simulated and the results of the simulation were compared to predictions of Similarity Theory. It was observed that the results of the simulation completely follow the values predicted by Similarity Theory. Both Similarity Theory predictions and simulation results demonstrated that the torque increases with the cube of change in rotor diameter whereas the thrust value and aerodynamic forces grow with the square of change in diameter.  相似文献   

10.
In this study, the potential of wind energy and assessment of wind energy systems in Turkey were studied. The main purpose of this study is to investigate the wind energy potential and future wind conversion systems project in Turkey. The wind energy potential of various regions was investigated; and the exploitation of the wind energy in Turkey was discussed. Various regions were analyzed taking into account the wind data measured as hourly time series in the windy locations. The wind data used in this study were taken from Electrical Power Resources Survey and Development Administration (EIEI) for the year 2010. This paper reviews the assessment of wind energy in Turkey as of the end of May 2010 including wind energy applications. Turkey's total theoretically available potential for wind power is around 131,756.40 MW and sea wind power 17,393.20 MW annually, according to TUREB (TWEA). When Turkey has 1.5 MW nominal installed wind energy capacity in 1998, then this capacity has increased to 1522.20 MW in 2010. Wind power plant with a total capacity of 1522.20 MW will be commissioned 2166.65 MW in December 2011.  相似文献   

11.
David Berry   《Energy Policy》2009,37(11):4493-4499
In the last ten years, the wind energy industry has experienced many innovations resulting in wider deployment of wind energy, larger wind energy projects, larger wind turbines, and greater capacity factors. Using regression analysis, this paper examines the effects of technological improvements and other factors on the price of wind energy charged under long-term contracts in the United States. For wind energy projects completed during the period 1999–2006, higher capacity factors and larger wind farms contributed to reductions in wind energy contract prices paid by regulated investor owned utilities in 2007. However, this effect was offset by rising construction costs. Turbine size (in MW) shows no clear relationship to contract prices, possibly because there may be opposing factors tending to decrease costs as turbine size increases and tending to increase costs as turbine size increases. Wind energy is generally a low-cost resource that is competitive with natural gas-fired power generation.  相似文献   

12.
New high profitable wind turbines   总被引:1,自引:0,他引:1  
To generate more quantities of electric energy from wind it is necessary to use a new type of wind turbine built in the regulable mantle's nozzle. This wind turbine type replaces the free air stream from wind by a programmed, i.e. regulated, and partially concentrated stream of air. The nozzle shell is designed as an aerodynamically shaped ring with wings with its lower pressure side pointed towards the centre so that the lift force on each part of the wing is directed radially towards the centre. This induces centrifugal reaction force in the airflow that causes the stream field to expand strongly downstream of the rotor and includes a greater number of streamlines in the active stream in front of the rotor (upstream). Thus the nozzle forces a higher mass flow rate of air through the turbine. The higher mass flow and higher velocity reduction behind the rotor result in a higher energy output from the wind turbine in the nozzle. In this way the wind turbine efficiency is multiplied. New turbines induce more power from weaker and medium winds and their lasting time, because of the relation P=f(v3) (i.e. the power corresponds to wind velocity raised to third power). Wind turbine nozzle produces three times more energy than conventional wind turbine. Short economic analysis for conditions of the island of Lastovo indicates that profit gained by new turbines is up to five times higher than by conventional turbines. The new wind turbine nozzle should generate interest and demand on an international market, even for regions with weaker winds.  相似文献   

13.
Small wind turbines are usually installed to provide off-grid power and as such can be situated close to the load in a less-than-ideal wind resource. These wind regimes are often governed by low mean speeds and high wind turbulence. This can result in energy production less than that specified by the manufacturer's power curve. Wind turbulence is detrimental to the fatigue life of key components and overall turbine reliability and therefore must be considered in the design stage of small wind turbines. Consequently it is important to accurately simulate wind speed data at highly turbulent sites to quantify loading on turbine components. Here we simulate wind speed data using the Markov chain Monte Carlo process and incorporate long term effects using an embedded Markov chain. First, second and third order Markov chain predictions were found to be in good agreement with measured wind data acquired at 1 Hz. The embedded Markov chain was able to predict site turbulent intensity with a reasonable degree of accuracy. The site exhibited distinctive peaks in wind speed possibly caused by diurnal heating and cooling of the earth's surface. The embedded Markov chain method was able to simulate these peaks albeit with a time offset.  相似文献   

14.
This paper explores the global wind power potential of Airborne Wind Energy (AWE), a relatively new branch of renewable energy that utilizes airborne tethered devices to generate electricity from the wind. Unlike wind turbines mounted on towers, AWE systems can be automatically raised and lowered to the height of maximum wind speeds, thereby providing a more temporally consistent power production. Most locations on Earth have significant power production potential above the height of conventional turbines. The ideal candidates for AWE farms, however, are where temporally consistent and high wind speeds are found at the lowest possible altitudes, to minimize the drag induced by the tether. A criterion is introduced to identify and characterize regions with wind speeds in excess of 10 m s−1 occurring at least 15% of the time in each month for heights below 3000 m AGL. These features exhibit a jet-like profile with remarkable temporal constancy in many locations and are termed here “wind speed maxima” to distinguish them from diurnally varying low-level jets. Their properties are investigated using global, 40 km-resolution, hourly reanalyses from the National Center for Atmospheric Research's Climate Four Dimensional Data Assimilation, performed over the 1985–2005 period. These wind speed maxima are more ubiquitous than previously thought and can have extraordinarily high wind power densities (up to 15,000 W m−2). Three notable examples are the U.S. Great Plains, the oceanic regions near the descending branches of the Hadley cells, and the Somali jet offshore of the horn of Africa. If an intermediate number of AWE systems per unit of land area could be deployed at all locations exhibiting wind speed maxima, without accounting for possible climatic feedbacks or landuse conflicts, then several terawatts of electric power (1 TW = 1012 W) could be generated, more than enough to provide electricity to all of humanity.  相似文献   

15.
Increasing population and life standards causes fossil fuel consumption to increase. Due to this increasing consumption, fossil fuels are being depleted rapidly. In addition to rapid exhaustion, another important problem associated with fossil fuels is that their consumption has major negative impacts on the environment. Therefore, many countries around the world have included renewable energy systems (RES) in their future energy plans so that they can produce reliable and environmentally friendly energy. Parallel to this trend, various RES have been identified and recently integrated into the current energy network of Turkey as well. However, it should be recognized that renewable energy resources are not fully environmentally safe. Different RES are associated with different environmental impacts. In planning the future energy development of a country, evaluation of renewable energy resources potentials together with their associated environmental impacts is critical. The aim of this study is to create a decision support system for site selection of wind turbines using Geographic Information System (GIS) tools. Wind energy potential and environmental fitness/acceptability are used as decision criteria for the site selection process. Potential environmental impacts of wind generation are identified in accordance with Turkish legislations and previous studies; and represented as fuzzy objectives of the decision problem. Wind potential map of Turkey generated by General Directorate of Electrical Power Resources Survey and Development is used to identify economically feasible locations in terms of wind energy generation. A study area composed of Usak, Aydin, Denizli, Mugla, and Burdur provinces in Turkey is selected and divided into 250 m × 250 m grids. Each grid represents an alternative location for a wind turbine or group of wind turbines. Fuzzy environmental objectives such as “Acceptable in terms of noise level”, “Acceptable in terms of bird habitat”, “Acceptable in terms of safety and aesthetics” and “Safe in terms of natural reserves” associated with wind turbines are identified based on previous research and each of these objectives are represented by a fuzzy set. Individual satisfaction degree of each of these environmental objectives for each grid is calculated. Then these individual satisfactions are aggregated into an overall satisfaction degree using various aggregator operators such as “and”, “or”, and “order weighted averaging.” Thus, an overall satisfaction degree of all the environmental objectives is obtained for each grid in the study area. A map of environmental fitness is developed in GIS environment by using these overall satisfaction degrees. Then this map is utilized together with the wind potential map of Turkey to identify both potentially and environmentally feasible wind turbine locations within the study area.  相似文献   

16.
During the operation of the German test field for small Wind Energy Conversion Systems (WECS) on the island of Pellworm five wind turbines were tested following recommendations of the International Energy Agency (IEA) expert group. Possible errors in the estimation of a tested wind turbine's total energy output at a potential installation site are investigated. Different wind speed frequency distributions (the measured one, the Rayleigh and the two-parameter Weibull distribution) are used to calculate the total energy output. The differences between the various distributions are mostly below 10 per cent. An improvement of the energy output estimate by a Weibull-instead of a Rayleigh distribution was not found. It is also shown that the use of the recommended 10 min averages or any other average overestimates the WECS' efficiency, up to 14 per cent on average depending on turbulence intensity. Wind power instead of wind speed is the appropriate parameter for power performance testing. Spectra of wind power and electrical power output show three areas of different correlation. A resistance length for wind turbines is shown to be dependent on the WECS operation status.  相似文献   

17.
Wind energy potential in various parts of Turkey is becoming economical due to reductions in the wind turbine costs, and in fossil fuel atmospheric pollution. The global change program imposes restrictions for use of alternative renewable and environmentally friendly energy sources. Wind energy is among such energy potentials and its practical and economical use gain significance day by day. The first wind energy turbine site investigation and wind power application possibility have been presented for the Akhisar area within the eastern provinces of Turkey. Different wind turbine technologies are assessed according to the local wind speed variations. Locally and technologically suitable wind turbines are selected. Finally their locations are decided by expert views and field measurements with the usage of well known WASP software. It is calculated that a minimum of 31436 MWh/year wind can be generated in this site. In the calculations 10% error possibility is allowed.  相似文献   

18.
This paper provides an overview of the design requirements for medium-sized wind turbines intended for use in a remote hybrid power system. The recommendations are based on first-hand experience acquired at the University of Massachusetts through the installation, operation, and upgrade of a 250-kW turbine on a mountain top with difficult access in Western Massachusetts. Experience with the operation of this turbine and the design of its control system, together with a long history in the design and analysis of hybrid power systems, has made it possible to extend the work in Western Massachusetts to remote or hybrid power systems in general. The University test site has many attributes of more remote sites and the overall wind turbine installation is typical of one that could power a hybrid wind system. For example, access to the site is limited due to steep terrain, snow, and environmental restrictions. Also, the power lines feeding the turbine exhibit voltage sags and phase imbalance, especially during start-up. This paper is based on the experience gained from the operation of this wind turbine and assesses the requirements for the design and operation of medium to large wind turbines in remote locations. The work summarizes lessons learned relative to: (1) sensors, communication, and control capabilities; (2) grid connection issues; and (3) weather-related problems. The final section of the paper focuses on design requirements to ensure successful installation and the completion of maintenance and repairs at remote sites.  相似文献   

19.
This paper introduces an accurate procedure to choose the best site from many sites and suitable wind turbines for these sites depending on the minimum price of kWh generated (Energy Cost Figure (ECF)) from wind energy system. In this paper a new proposed computer program has been introduced to perform all the calculations and optimization required to accurately design the wind energy system and matching between sites and wind turbines. Some of cost calculations of energy methods have been introduced and compared to choose the most suitable method. The data for five sites in Saudi Arabia and hundred wind turbines have been used to choose the best site and the optimum wind turbine for each site. These sites are Yanbo, Dhahran, Dhulom, Riyadh, and Qaisumah. One hundred wind turbines have been used to choose the best one for each site. This program is built in a generic form which allows it to be used with unlimited number of sites and wind turbines in all over the world. The program is written by using Visual Fortran and it is verified with simple calculation in Excel. The paper showed that the best site is Dhahran and the suitable wind turbine for this site is KMW-ERNO with 5.85 Cents/kWh. The worst site to install wind energy system is Riyadh with minimum price of kWh of 12.81 Cents/kWh in case of using GE Energy 2 wind turbine.  相似文献   

20.
Wind power potential by itself is not a good indicator of the suitability of a region for wind power generation for different purposes. Economic attractiveness is a better indicator in this regard as it stimulates the involvement of private businesses in this sector. Naturally, the shorter is the payback period or the time required to reach profitability, the more attractive will be the project. Considering the high wind energy potential of some regions of Iran, this study evaluates the wind energy available for generating electricity as well as hydrogen by industrial and agricultural sectors in four cities of Ardebil province, namely Ardebil, Khalkhal, Namin, and Meshkinshahr, and then conducts an econometric analysis accordingly. Wind power potentials are evaluated using the energy pattern factor and Weibull distribution function based on 5-year meteorological data of the studied regions. Economic evaluations are performed based on the present worth of incomes and costs, which are estimated for two models of wind turbines with 3.5 and 100 KW rated power. Results indicate that the cities of Namin and Ardebil with wind power densities of respectively 261.68 and 258.99 W/m2 have the best condition. The economic analysis conducted for turbines shows that for Ardebil, installation of the 3.5 KW and 100 KW turbines will have a payback period of 13 and 5 years, respectively. For Khalkhal, Namin, and Meshkinshahr, the only feasible option is installation of the 100 KW turbine, which would result in a payback period of respectively 10.2, 6.1 and 8.7 years. Then it is investigated how much hydrogen can be gained if these private sectors invest in producing hydrogen using nominated wind turbines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号