首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
深度学习已在众多领域如图像分类中取得突破性发展,其成功依赖大量标注数据。然而很多领域中数据标注代价昂贵。主动学习主要是通过合适的查询策略选择信息量大的未标注数据交由专家或者工作人员进行标记,试图以尽可能少的高质量标注数据训练高性能的模型。从不同角度详细地对基于预设计策略和基于学习损失的主动学习方法的研究现状进行了分析和比较,最后对现有的主动学习进行了总结和进一步指出了一些值得研究的方向。  相似文献   

2.
针对高光谱图像分类过程中分类精度低和样本数量较少的问题,文中提出了一种基于网格法分集和主动学习的图像分类方法。该方法利用网格法将主成分空间划分成若干网格,在每个含有样本的网格中随机挑选一个样本,并将其原始光谱数据归入训练集;随后,采用主动学习方法,在其余样本中用K-近邻法选择不确定性最大的若干样本并入训练集,从而扩充了训练集,并使数据集具有代表性,提升了分类精度。同时,在数据处理过程中,联合运用主成分分析和线性判别分析对光谱数据进行降维,进一步提高了运算速度。实验结果表明,在Indian Pines高光谱数据集中,在少量训练集样本的情况下,该方法相较于随机分集和非主动学习,分别将总体分类精度提升了12.24%和19.76%。  相似文献   

3.
乳腺癌已经成为全球第一大癌症,乳腺癌的早期发现及良恶性诊断对于治疗具有重要的意义.针对传统机器学习方法在乳腺癌病理图像分类任务中性能不足和准确率低的问题,本文提出了基于CNN(卷积神经网络)的乳腺癌病理图像分类模型,将乳腺癌病理图像分为良性与恶性.该模型以VGG网络为基础,对网络结构进行调整,在公开的BreakHis数...  相似文献   

4.
基于深度学习的红外与可见光图像融合算法依赖人工设计的相似度函数衡量输入与输出的相似度,这种无监督学习方式不能有效利用神经网络提取深层特征的能力,导致融合结果不理想。针对该问题,该文首先提出一种新的红外与可见光图像融合退化模型,把红外和可见光图像视为理想融合图像通过不同退化过程后产生的退化图像。其次,提出模拟图像退化的数据增强方案,采用高清数据集生成大量模拟退化图像供训练网络。最后,基于提出的退化模型设计了简单高效的端到端网络模型及其网络训练框架。实验结果表明,该文所提方法不仅拥有良好视觉效果和性能指标,还能有效地抑制光照、烟雾和噪声等干扰。  相似文献   

5.
多视角主动学习是一种相比于传统主动学习能够取得更大程度版本空间缩减的技术,已被应用于多种类型的大数据分析中.本文针对现有的多视角主动学习算法在分类假设生成和采样策略中存在的不足分别提出了相应的改进方案.本文将Boosting思想应用到多视角主动学习框架中,通过将历史上各次查询得到的分类假设进行加权式投票来实现每次查询后分类假设的强化;与此同时,还提出了一种自适应的分级竞争采样策略,当分类争议样本规模较大时通过无监督谱聚类获得上述样本的空间分布描述,并在各个聚类中结合样本的分类不确定度和冗余度信息通过二次规划求解以获得可靠的批处理采样.为了证明上述改进的有效性,本文将多视角主动学习应用到图像分类领域中,并通过基于不同图像特征的视角来分别生成相应的分类假设.实验表明,本文提出的两点改进策略不仅均有助于提升多视角主动学习的性能,而且基于上述不同视角随机组合的多视角主动学习方法相比于经典的单视角主动学习算法能够更快地实现收敛并达到较高的场景分类准确性.  相似文献   

6.
胡根生  查慧敏  梁栋  鲍文霞 《电子学报》2017,45(12):2855-2862
利用多源多时相遥感图像,给出一种结合分类与迁移学习的薄云覆盖遥感图像地物信息恢复算法.首先利用多方向非抽样对偶树复小波变换对多源多时相遥感图像进行多分辨率分解,对分解后的薄云图像的高频系数利用贝叶斯方法进行地物初分类;再对每类地物的低频系数通过迁移最小方差支持向量回归模型进行域自适应学习,获取模型参数;最后利用所获的迁移回归模型,用无云参考图像的低频系数预测薄云覆盖图像的低频系数,去除薄云,恢复薄云覆盖图像的地物信息.实验结果表明,本文算法恢复的地物细节清楚,光谱失真较小.特别对地物季节性变化的薄云覆盖遥感图像,本文算法能有效恢复薄云覆盖区域的地物信息.  相似文献   

7.
当前,在图像目标检测识别方面,深度学习技术已经成为研究的热点.然而深度学习在进行网络训练时需要使用大量的样本,当样本数目较少时,得到的训练模型其检测效果往往不佳.介绍了色彩变换、水平翻转、旋转、亮度变换、缩放、裁剪、添加噪声等不同数据增强方法,并结合VOC2007数据集,采用数据增强技术实现样本扩充.实验结果表明对样本...  相似文献   

8.
针对委员会成员模型投票不一致性的度量问题,提出了一种基于最小差异采样的主动学习图像分类方法。该方法首先基于标注样本集的重采样结果构建决策委员会,然后利用投票概率较高的2个类别的概率值的差异来度量未标注样本集每个样本的投票不一致性,选择概率差异最小的样本交由人工专家标注,如此迭代更新分类器。将新方法与EQB算法及nEQB算法在多个数据集上进行实验对比,实验结果表明所提方法能够有效提高分类的准确率。还对组成决策委员会的成员模型的数目设置进行了分析和讨论,结果表明在相同的成员模型数目时所提方法比nEQB算法更为有效。  相似文献   

9.
提出了一种基于主动学习方法的网络流分类方法,采用主动学习技术提取少量高质量的训练样本进行建模.并提出了一种基于轮盘赌选择的样本筛选方法,能够有效避免已有主动学习方法中的早熟收敛现象.实验结果表明,其相对于已有的流识别方法,能够在仅依赖少量高质量训练样本的前提下,保证较高的识别正确率,更适用于现实网络环境.  相似文献   

10.
朱斌  刘子龙 《电子科技》2021,34(2):52-56
在涉及分类识别的问题中,首选方法是基于卷积神经网络的分类方法.为解决传统卷积神经网络处理能力较差、分类精度较低等问题,文中提出了一种新型的卷积神经网络图像分类模型.一方面在传统的网络模型基础上增加新型Inception模块,增强了模型的特征信息的融合,提高了特征表达的能力;另一方面通过激活函数、数据增强、批量正则化、权...  相似文献   

11.
机器学习在数据密集型应用中十分广泛,但缺点是当数据集很小时往往效果欠佳.近年来,人们提出了小样本学习来解决这个问题.小样本学习指只利用少量样本来训练识别这些样本的机器学习模型.由于小样本学习的实用价值,业界提出很多针对的研究方法,但是目前国内缺少该问题的综述.本文中,对目前业界提出的小样本学习模型及算法进行了总结和探索.首先,给出了小样本学习的问题定义,并介绍了其他一些相关的机器学习问题;然后,根据先验知识,通过从3种数据增强方法和4种模型详细介绍了小样本学习方法;最后,对小样本的未来发展进行了展望.  相似文献   

12.
复杂背景下的运动目标分割技术是近年来多媒体通信技术的研究热点之一。文中提出一种基于SNAKE模型的运动目标分割技术。首先,利用运动检测的方法,从视频图像中粗略提取出运动目标;然后再利用SNAKE模型收敛到更为精确的物体边缘。模拟实验的结果表明,该方法对运动目标的提取有较好的分割效果。  相似文献   

13.
遥感图像分类的神经网络并行学习算法   总被引:2,自引:0,他引:2  
王耀南  王绍源 《电子学报》1997,25(10):99-101
本文提出了一种基于Kalman滤波方法的神经网络并行学习算法,模拟实验表明,这种学习算法加快了网络遥感图像分类的收敛速度和精度。  相似文献   

14.
曹婷 《移动信息》2020,(2):00074-00078
研究一种基于卷积神经网络的图像分类算法,该方法是以5个卷积层和3个全连接层构成模型,第1、2、5个卷积层连接有最大池化层,输出层采用softmax激活函数。为了提升模型的性能,在隐藏层采用了ReLU激活函数,同时引入了重叠池化方法。为抑制模型产生过拟合,采用了数据增强策略。实验结果表明,该模型的图像分类精度明显优于传统机器学习方法。  相似文献   

15.
本文研究天波雷达基于距离?多普勒(Range?Doppler, RD)图像的干扰检测问题。在干扰检测过程中,错误检测可能是干扰的漏检与虚警问题,为此考虑采用主动学习方法,将算法模型难以判决的样本由专家标注,并将标注样本加入至训练集中以达到提升检测性能的目的。同时,也需要解决训练集样本的冗余问题,为此使用原型数据学习方法,建立有干扰和无干扰样本数据云,有效地降低训练集样本量。实测数据实验表明,原型方法将初始训练集样本数量降低至23.5%,主动学习方法取得的检测准确率为97.42%,而传统监督学习最近邻方法准确率为87.96%。因此,本文方法能够有效提升天波雷达干扰检测能力,为天波雷达是否需要进行干扰处理与换频检测等工作提供可靠依据。  相似文献   

16.
高光谱成像技术在近十几年里实现了飞跃式的发展。高光谱图像分类的应用受到广泛关注,其分类精度的提升是当前研究的重点。高光谱图像分类是利用不同地物的诊断性吸收特征区分地物类别。传统的高光谱图像分类仅利用图像的光谱特征,分类效果不明显。近些年的研究表明,同时分析地物光谱特征和空间分布能有效提升分类精度。首先总结了众多空谱联合分类方法,依据空谱信息融合阶段的不同,将空谱联合分类分为预处理的分类、综合处理的分类和后处理的分类,简要介绍了深度学习在空谱联合分类中的实现方法,最后对空谱联合分类的研究前景进行了展望。  相似文献   

17.
本文提出了一种基于判别子字典学习算法的图像分类优化方法.在判别字典学习算法的基础上,引入字典矩阵的正则化约束项,针对每一类图像学习其对应的特定字典,使字典中包含该类别的特定原子,规避不同子字典之间原子的相关性.同时,引入标签信息矩阵和拉普拉斯正则化矩阵,使大系数集中在某一类别的特定原子上,属于同一类别的样本彼此靠近,从而提高字典的判别能力.将该算法应用在3种不同的数据集上,实验结果证明了所提方法的有效性.  相似文献   

18.
本文利用高光谱图像的空间-光谱维信息,结合主动学习算法实现高光谱图像分类。该算法利用较少的训练样本获得较高的分类精度,与此同时,该算法的运算过程复杂度高且计算效率非常低。针对这一特点,本文提出了一种利用图像处理器(Graphic processing units,GPUs)对算法进行数据级并行计算优化。并且利用真实场景的高光谱图像对文中提出的并行计算优化方案进行了实验验证,结果表明该方法在保证与串行分类精度一致的情况下,其计算加速比达到34倍左右,验证了基于GPU的高光谱图像分类算法的有效性。  相似文献   

19.
针对深度学习在SAR遥感图像地物分类检测中存在的问题,文章通过对基于深度学习的卷积神经网络(Convolutional Neural Network,CNN)进行优化改进,从而提高分类检测准确性。首先提出采用Leaky ReLU函数作为非线性整流函数,克服网络反向传播时梯度消失的问题;然后提出变步长动量梯度下降算法,加速网络收敛、减弱震荡,并避免网络陷入局部极小值。最后综合提出了"Leaky ReLU+变步长+动量梯度下降"的优化方法。通过实验,验证了文章所提出方法的有效性和准确性。  相似文献   

20.
苏赋  吕沁  罗仁泽 《电信科学》2019,35(11):58-74
近年来,深度学习在计算机视觉领域中的表现优于传统的机器学习技术,而图像分类问题是其中最突出的研究课题之一。传统的图像分类方法难以处理庞大的图像数据,且无法满足人们对图像分类精度和速度的要求,而基于深度学习的图像分类方法突破了此瓶颈,成为目前图像分类的主流方法。从图像分类的研究意义出发,介绍了其发展现状。其次,具体分析了图像分类中最重要的深度学习方法(即自动编码器、深度信念网络与深度玻尔兹曼机)以及卷积神经网络的结构、优点和局限性。再次,对比分析了方法之间的差异及其在常用数据集上的性能表现。最后,探讨了深度学习方法在图像分类领域的不足及未来可能的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号