首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural fibers used in this study were both pre-treated and modified residues from sugarcane bagasse. Polymer of high density polyethylene (HDPE) was employed as matrix in to composites, which were produced by mixing high density polyethylene with cellulose (10%) and Cell/ZrO2·nH2O (10%), using an extruder and hydraulic press. Tensile tests showed that the Cell/ZrO2·nH2O (10%)/HDPE composites present better tensile strength than cellulose (10%)/HDPE composites. Cellulose agglomerations were responsible for poor adhesion between fiber and matrix in cellulose (10%)/HDPE composites. HDPE/natural fibers composites showed also lower tensile strength in comparison to the polymer. The increase in Young’s modulus is associated to fibers reinforcement. SEM analysis showed that the cellulose fibers insertion in the matrix caused an increase of defects, which were reduced when modified cellulose fibers were used.  相似文献   

2.
Review of the mechanical properties of carbon nanofiber/polymer composites   总被引:1,自引:0,他引:1  
In this paper, the mechanical properties of vapor grown carbon nanofiber (VGCNF)/polymer composites are reviewed. The paper starts with the structural and intrinsic mechanical properties of VGCNFs. Then the major factors (filler dispersion and distribution, filler aspect ratio, adhesion and interface between filler and polymer matrix) affecting the mechanical properties of VGCNF/polymer composites are presented. After that, VGCNF/polymer composite mechanical properties are discussed in terms of nanofibers dispersion and alignment, adhesion between the nanofiber and polymer matrix, and other factors. The influence of processing methods and processing conditions on the properties of VGCNF/polymer composite is also considered. At the end, the possible future challenges for VGCNF and VGCNF/polymer composites are highlighted.  相似文献   

3.
The present paper developed a three-dimensional (3D) “tension–shear chain” theoretical model to predict the mechanical properties of unidirectional short fiber reinforced composites, and especially to investigate the distribution effect of short fibers. The accuracy of its predictions on effective modulus, strength, failure strain and energy storage capacity of composites with different distributions of fibers are validated by simulations of finite element method (FEM). It is found that besides the volume fraction, shape, and orientation of the reinforcements, the distribution of fibers also plays a significant role in the mechanical properties of unidirectional composites. Two stiffness distribution factors and two strength distribution factors are identified to completely characterize this influence. It is also noted that stairwise staggering (including regular staggering), which is adopted by the nature, could achieve overall excellent performance. The proposed 3D tension–shear chain model may provide guidance to the design of short fiber reinforced composites.  相似文献   

4.
High density polyethylene (HDPE)/attapulgite (AT) nanocomposites, prepared by conventional injection molding (CIM) and dynamic packing injection molding (DPIM), were investigated with focus on AT-induced crystallization and orientation under shear. Infrared spectroscopy (FTIR) analysis showed there is no special chemical interaction between HDPE and AT, but shear induced significant changes on the material structure and properties. Differential scanning calorimetry (DSC) analysis showed strong nucleation effect by AT especially under shear. And more, shear will induce much better dispersion of AT in the DPIM sample vs. CIM. AT nanorods and lamellae of HDPE are more organized in the DPIM sample while there is only random distribution in the CIM sample. Most AT nanorods embed in the HDPE lamellae and form a brush-like hybrid structure due to shear. The shear-induced orientation will be enhanced with higher AT loading. The mechanical performance of the composites was significantly improved via DPIM.  相似文献   

5.
Composites of polypropylene (PP) and high density polyethylene (HDPE) reinforced with 20 wt.% of curaua fibres were prepared using a twin-screw extruder and the effect of screw rotation speed (SRS) was evaluated by measuring the output, the mechanical properties of the composites, the morphology and the fibre dimensions. Increase in SRS causes a decrease in length, diameter and aspect ratio of the fibres in both composites, due to the high shear forces acting in the molten polymer and transferred to the fibres. Consequently, the reinforcement effect of the fibres decreased, as evidenced by the flexural and tensile mechanical properties of the composites. Additionally, polymeric matrices undergoes thermo-mechanical degradation during processing, this also contributed to the changes in the mechanical properties. Comparison between the matrices showed that PP composites are less affected by changes in SRS, suffering fewer changes in fibre dimensional parameters and in the mechanical properties than HDPE composites.  相似文献   

6.
Many attempts have been made to fabricate lightweight, high-performance, and low-cost polymeric composites. To improve the mechanical performance of the same material compared to conventional composites, paired hybrid materials were manufactured with different lamination structures. Each of six types of hybrid composite was designed by lamination pairing of carbon/aramid fabric and carbon/glass fabric using VARTM. The dependence of the mechanical properties of the samples on the pairing effects of the lamination structures was investigated. All pairing materials did not lead to a large increase of tensile strength due to the domination of carbon fiber, but the mechanical properties of specific laminates were clearly changed by the particular pairing sequence used. Using the limited material, the design of an effective structure was the central laminating condition with a good tensile and bending properties. Laminating position of the carbon fiber was found to play an important role in the stacking design of hybrid composites.  相似文献   

7.
Additive manufacturing (AM) technologies have been successfully applied in various applications. Fused deposition modeling (FDM), one of the most popular AM techniques, is the most widely used method for fabricating thermoplastic parts those are mainly used as rapid prototypes for functional testing with advantages of low cost, minimal wastage, and ease of material change. Due to the intrinsically limited mechanical properties of pure thermoplastic materials, there is a critical need to improve mechanical properties for FDM-fabricated pure thermoplastic parts. One of the possible methods is adding reinforced materials (such as carbon fibers) into plastic materials to form thermoplastic matrix carbon fiber reinforced plastic (CFRP) composites those could be directly used in the actual application areas, such as aerospace, automotive, and wind energy. This paper is going to present FDM of thermoplastic matrix CFRP composites and test if adding carbon fiber (different content and length) can improve the mechanical properties of FDM-fabricated parts. The CFRP feedstock filaments were fabricated from plastic pellets and carbon fiber powders for FDM process. After FDM fabrication, effects on the tensile properties (including tensile strength, Young's modulus, toughness, yield strength, and ductility) and flexural properties (including flexural stress, flexural modulus, flexural toughness, and flexural yield strength) of specimens were experimentally investigated. In order to explore the parts fracture reasons during tensile and flexural tests, fracture interface of CFRP composite specimens after tensile testing and flexural testing was observed and analyzed using SEM micrograph.  相似文献   

8.
Thin kenaf/polypropylene (PP) composite sheets were manufactured via extrusion. The effects of kenaf and maleated PP (MAPP) proportions, fibre length, PP melt flow index (MFI) and die temperature on tensile, flexural, in-plane and out-of-plane shear properties were analysed by conducting experiments through ‘design of experiments’ methodology. Higher kenaf content and lower die/barrel temperatures resulted in composite sheets with higher average mechanical properties in various modes of testing. Matrix MFI appeared to significantly affect all mechanical properties. It is interesting to note that the properties of the very short-fibre composites produced are comparable to those reinforced with longer discontinuous fibres and long-fibre mats.  相似文献   

9.
Unidirectional flax fiber reinforced composites (FFRC) were made by hot press. Effects of processing parameters, including curing pressure, time and temperature on the distribution, shape and content of the voids formed during the manufacturing process of FFRC were investigated. The voids were characterized with the aid of ultrasonic C-scan and optical microscopy. Tensile and interlaminar shear properties of FFRC containing different content and shape of the voids were tested. The results showed that the voids were easily trapped in both the intralaminar and inside the flax yarns of FFRC due to the distinct structural characteristics of flax fibers. The relationships between voids and mechanical properties of the composites were established.  相似文献   

10.
Kenaf (Hibiscus Cannabinus) bast fiber reinforced poly(vinyl chloride) (PVC)/thermoplastic polyurethane (TPU) poly-blend was prepared by melt mixing method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber content: 20%, 30% and 40% (by weight), with the processing parameters: 140 °C, 11 min, and 40 rpm for temperature, time and speed, respectively. After mixing, the composite was compressed using compressing molding machine. Mechanical properties (i.e. tensile properties, flexural properties, impact strength) were studied. Morphological properties of tensile fracture surface were studied using Scanning electron microscope (SEM). Thermal properties of the composites were studied using Thermogravimetric Analyses (TGA). PVC/TPU/KF composites have shown lower tensile strength and strain with increase in fiber content. Tensile modulus showed an increasing trend with increase in fiber content. Impact strength decreased with increase in fiber content; however, high impact strength was observed even with 40% fiber content (20.2 kJ/m2). Mean while; the 20% and 30% fiber contents showed higher impact strength of 34.9, 27.9 kJ/m2; respectively. SEM showed that there is poor fiber/matrix adhesion. Thermal degradation took place in three steps. In the first step, composites as well as the matrix had a similar stability. At the second step, matrix showed a slightly better stability than the composites. At the last step, composites showed a better stability than the matrix.  相似文献   

11.
Aluminum matrix composite reinforced by in situ generated single crystalline MgAl2O4 whiskers was fabricated by chemical synthesis method in an Al-Mg-H3BO3 system. A large number of MgAl2O4 whiskers were generated during the sintering process and distributed homogeneously in the Al matrix. The whiskers penetrate into the matrix grains to form the framework of the materials, leading to an incredible increase in mechanical properties of the composites. The generation mechanism of the MgAl2O4 whiskers was also discussed.  相似文献   

12.
The aim of this paper was to evaluate the effect of hybridizing glass and curaua fibers on the mechanical properties of their composites. These composites were produced by hot compression molding, with distinct overall fiber volume fraction, being either pure curaua fiber, pure glass fiber or hybrid. The mechanical characterization was performed by tensile, flexural, short beam, Iosipescu and also nondestructive testing. From the obtained results, it was observed that the tensile strength and modulus increased with glass fiber incorporation and for higher overall fiber volume fraction (%Vf). The short beam strength increased up to %Vf of 30 vol.%, evidencing a maximum in terms of overall fiber/matrix interface and composite quality. Hybridization has been successfully applied to vegetable/synthetic fiber reinforced polyester composites in a way that the various properties responded satisfactorily to the incorporation of a third component.  相似文献   

13.
The interest for the use of vegetal fibers as polymers reinforcement has recently increased because of their unique environmental and technological advantages. This work evaluated the use of Curauá fibers in polyamide-6 composites aiming at glass fiber replacement. Fiber content of 20, 30 or 40 wt% and fiber lengths of 0.1 or 10 mm were studied. Fibers were treated with N2 plasma or washed with NaOH solution, to improve their adhesion to PA-6. Samples with 20 wt% of short or long fibers, with or without pre-treatment, were compounded in two different co-rotating intermeshing twin-screw extruders. These samples were submitted to mechanical and thermal tests. In conclusion, non-dried raw materials improved fiber/matrix interfacial adhesion. Tensile and flexural properties of this composite are better than unfilled, but lower than glass fiber reinforced polyamide-6. However, its impact resistance and heat deflection temperature are similar to the glass fiber reinforced polyamide-6 and its lower density, enable it to replace this latter in specific non-critical applications.  相似文献   

14.
In this work, kenaf fibers were pre-treated in a NaOH solution (6% in weight) at room temperature for two different periods (48 and 144 h). The chemical treatment of kenaf fibers for 48 h allowed to clean their surface removing each impurity whereas 144 h of immersion time had detrimental effect on the fibers surface and, consequently, on their mechanical properties.Untreated and NaOH treated kenaf fibers (i.e. for 48 h) were also used as reinforcing agent of epoxy resin composites. The effect of the stacking sequence (i.e. using unidirectional long fibers or randomly oriented short fibers) and the chemical treatment on the static mechanical properties was evaluated showing that the composites exhibit higher moduli in comparison to the neat resin. As regards the strength properties, only the composites reinforced with unidirectional layers show higher strength than the neat resin. Moreover, the alkali treatment increased the mechanical properties of the composites, due to the improvement of fiber–matrix compatibility.The dynamic mechanical analysis showed that the storage and the loss moduli are mainly influenced by the alkali treatment above the glass transition temperature. Moreover, the alkali treatment led to a notable reduction of tan δ peaks in addition to significant shifts of tan δ peaks to higher temperatures whereas the stacking sequence did not influence the trends of storage modulus, loss modulus and damping of the composites.  相似文献   

15.
The mechanical behaviour of fabric-reinforced composites can be affected by several parameters, such as the properties of fabrics and matrix, the fibre content, the bond interphase and the anchorage ability of fabrics. In this study, the effects of the fibre type, the fabric geometry, the physical and mechanical properties of fabrics and the volume fraction of fibres on the tensile stress–strain response and crack propagation of cementitious composites reinforced with natural fabrics were studied. To further examine the properties of the fibres, mineral fibres (glass) were also used to study the tensile behaviour of glass fabric-reinforced composites and contrast the results with those obtained for the natural fabric-reinforced composites. Composite samples were manufactured by the hand lay-up moulding technique using one, two and three layers of flax and sisal fabric strips and a natural hydraulic lime (NHL) grouting mix. Considering fabric geometry and physical properties such as the mass per unit area and the linear density, the flax fabric provided better anchorage development than the sisal and glass fabrics in the cement-based composites. The fabric geometry and the volume fraction of fibres were the parameters that had the greatest effects on the tensile behaviour of these composite systems.  相似文献   

16.
A flame retardant efficiency of flame retardants; ammonium polyphosphate (APP), magnesium hydroxide (Mg(OH)2), zinc borate (Zb), and combination of APP with Mg(OH)2 and Zb in sisal fiber/polypropylene (PP) composites was investigated using a horizontal burning test and a vertical burning test. In addition, maleic anhydride grafted polypropylene (MAPP) was used as a compatibilizer to enhance the compatibility in the system; i.e. PP-fiber and PP-flame retardants. Thermal, mechanical, and morphological properties of the PP composites were also studied. Adding the flame retardants resulted in improved flame retardancy and thermal stability of the PP composites without deterioration of their mechanical properties. APP and combination of APP with Zb effectively enhanced flame retardancy of the PP composites. No synergistic effect was observed when APP was used in combination with Mg(OH)2. SEM micrographs of PP composites revealed good distribution of flame retardants in PP matrix and good adhesion between sisal fiber and PP matrix.  相似文献   

17.
Triacetate citrate plasticized poly lactic acid and its nanocomposites based on cellulose nanocrystals (CNC) and chitin nanocrystals (ChNC) were prepared using a twin-screw extruder. The materials were compression molded to films using two different cooling rates. The cooling rates and the addition of nanocrystals (1 wt%) had an impact on the crystallinity as well as the optical, thermal and mechanical properties of the films. The fast cooling resulted in more amorphous materials, increased transparency and elongation to break, (approx. 300%) when compared with slow cooling. Chitin nanocomposites were more transparent than cellulose nanocomposites; however, microscopy study showed presence of agglomerations in both materials. The mechanical properties of the plasticized PLA were improved with the addition of a small amount of nanocrystals resulting in PLA nanocomposites, which will be further evaluated for film blowing and thus packaging applications.  相似文献   

18.
In the present work, poly(lactic acid) (PLA) sheets reinforced with organically modified montmorillonite (o-MMT) were manufactured through reactive extrusion-calendering using a masterbatch approach in a pilot plant. Reaction monitoring analysis suggests the occurrence of premature reactions between o-MMT and the reactive agent; lowering further structural changes in the polymeric matrix. While calendered sheets exhibited a homogenous and preferential distribution of clay particles in MD, the coexistence of mixed structures, involving tactoids of various sizes as well as intercalated clay layers was observed. However, a higher and finer dispersion of o-MMT particles was achieved through clay–polymer tethering via chain extender molecules. Under tensile loading, the aforementioned clay dispersion enhanced multiple cavitation processes, notably improving PLA shear flow.  相似文献   

19.
The aim of the present study is to investigate and compare the mechanical and thermal properties of raw jute and banana fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with banana fiber. The jute and banana fibers were prepared with various weight ratios (100/0, 75/25, 50/50, 25/75 and 0/100) and then incorporated into the epoxy matrix by moulding technique to form composites. The tensile, flexural, impact, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that addition of banana fiber in jute/epoxy composites of up to 50% by weight results in increasing the mechanical and thermal properties and decreasing the moisture absorption property. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope.  相似文献   

20.
In this study, chopped carbon fiber reinforced trans-1, 4-polyisoprene (TPI) was developed via a proposed new manufacturing process with the aim of improving weak mechanical properties of bulk TPI bulk. Specimens of the developed shape memory polymer (SMP) composites were fabricated with carbon fiber weight fraction of 5%, 7%, 9%, 11% and 13%, respectively. Measured are the effects of chopped carbon fiber and temperature on: (a) shape recovery ratio and rate; (b) stress–strain relationship; (c) maximum tensile stress, strain and Young’s modulus; and (d) maximum stress and residual strain under a constant strain cyclic loading. In addition, SEM micrographs were also presented to illustrate the fracture surface. The present experimental results show that the SMP with 7% carbon fiber weight fraction appears to perform best in all the tests. This indicates that the 7% carbon fiber weight fraction could be the optimum value for the SMP developed using the proposed manufacturing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号