首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用扫描电镜(SEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)等测试方法表征了上浆/未上浆国产T700级(MT700)碳纤维的表面特性,并通过单丝断裂实验测试了单丝复合体系微观界面剪切强度(IFSS),在此基础上研究了碳纤维表面特性对单丝复合体系微观界面性能及其耐湿热性能的影响.研究表明:MT700碳纤维表面上浆剂改善了纤维/基体微观界面强度及其耐湿热性能;湿热环境对复合材料的微观界面性能影响显著,尤其是造成纤维/基体间的化学键合作用破坏,去湿后部分界面性能可恢复.  相似文献   

2.
An experimental study of the incorporation of non-fluorinated and fluorinated Twaron fibers in polypropylene (PP) is presented. Surface modifications were made to Twaron fiber by direct fluorination technique using elemental fluorine in order to improve the interfacial adhesion between the fiber and matrix. Composites of PP/Twaron fiber (both Fluorinated and non-fluorinated) with 0.6%, 1.25%, 5% and 10% of Twaron fibers (w/w) were prepared by a solution method. Mechanical behaviour was estimated by the measurement of the tensile strength. The mechanical properties of PP improve significantly with the incorporation of Twaron fibers and fluorinated fiber composites show superior mechanical properties compared to the non-fluorinated system. The morphology was determined by scanning electron microscopy (SEM), showing good dispersion of the fibers. The thermal and crystallization behaviour of PP/Twaron fiber composites were studied by thermogravimetry (TG) and differential scanning calorimetry (DSC). The effect of fiber content and fiber surface treatments on the thermal properties was evaluated. DSC analysis exhibited an increase in the crystallization temperature and crystallinity, melting temperature upon the addition of fluorinated fibers to the PP matrix. This is attributed to the nucleating effects of the fiber surfaces. Also the thermal stability (from TG) and surface energy (determined from contact angle measurement) increased for fluorinated fiber composites. Surface modification of Twaron fibers leads to improved adhesion with the PP matrix and hence an improvement in properties of the Twaron fiber-PP composites.  相似文献   

3.
Abaca (Musa textilis)-reinforced polypropylene composites have been prepared and their flexural mechanical properties studied. Due to their characteristic properties, M. textilis has a great economic importance and its fibers are used for specialty papers. Due to its high price and despite possessing very distinctive mechanical properties, to date abaca fibers had not been tested in fiber-reinforced composites. Analysis of materials prepared showed that, in spite of reduced interface adhesion, flexural properties of the PP composites increased linearly with fiber content up to 50 wt.%. Addition of a maleated polypropylene coupling agent still enhanced the stress transfer from the matrix to the reinforcement fiber. As a result, composites with improved flexural properties were obtained. The mechanical properties of matrix and reinforcing fiber were evaluated and used for modelling both the flexural strength and modulus of its composites. In addition, the impact strength of materials was evaluated. Comparison with mechanical properties of composites reinforced with fiberglass points out the potentiality of abaca-reinforced polypropylene composites as suitable substitutes in applications with low impact strength demands.  相似文献   

4.
In recent years, carbon nanotubes (CNTs) grown on fibers have attracted a lot of interest as an additional reinforcing component in conventional fiber-reinforced composites to improve the properties of the fiber/matrix interface. Due to harsh growth conditions, the CNT-grafted fibers often exhibit degraded tensile properties. In the current study we explore an alternative approach to deliver CNTs to the fiber surface by dispersing CNTs in the fiber sizing formulation. This route takes advantage of the developed techniques for CNT dispersion in resins and introduces no damage to the fibers. We focus on unidirectional glass fiber/epoxy macro-composites where CNTs are introduced in three ways: (1) in the fiber sizing, (2) in the matrix and (3) in the fiber sizing and matrix simultaneously. Interfacial shear strength (IFSS) is investigated using single-fiber push-out microindentation. The results of the test reveal an increase of IFSS in all three cases. The maximum gain (over 90%) is achieved in the composite where CNTs are introduced solely in the fiber sizing.  相似文献   

5.
《Composites Part A》2005,36(7):987-994
The fracture surface morphology of short fiber reinforced thermoplastics (SFRTs) has often been used to assess qualitatively the degree of fiber–matrix interfacial adhesion. Mechanical properties such as tensile strength, fracture toughness and failure strain, etc. are then correlated with the morphology. Fracture surfaces showing fibers surrounded by a large amount of matrix material is commonly regarded as indication of strong fiber–matrix interfacial adhesion while smooth fibers are characteristic of weak interfacial adhesion. Many experimental results of SFRTs have been so interpreted. However, it is shown in this paper that strictly speaking, such interpretations are generally incorrect. Moreover, the amount of matrix material does not provide a quantitative measure of the adhesion. Correct implication of the morphology of fracture surfaces is clarified. Short glass fiber reinforced polyamide 6,6/polypropylene (PA 6,6/PP) blends toughened by rubber are employed as examples for SFRTs since the PA 6,6/PP blend system by changing PA 6,6 concentration in the matrix blend represents a wide range of matrix materials. It is demonstrated that the fracture surface morphology of such composites is dependent on both fiber–matrix interfacial adhesion strength and matrix shear yield strength. Consequently, tensile failure strain is well correlated with the post-mortem fracture surface morphology of these SFRTs.  相似文献   

6.
The main goals of this work were to study the effect of different chemical treatments on sisal fiber bundles tensile properties as well as on tensile properties of composites based on poly(lactic acid) (PLA) matrix and sisal fibers. For this purpose, sisal fibers were treated with different chemical treatments. After treating sisal fibers the tensile strength values decreased respect to untreated fiber ones, especially when the combination of NaOH + silane treatment was used. Taking into account fiber tensile properties and fiber/PLA adhesion values, composites based on silane treated fibers would show the highest tensile strength value. However, composites based on alkali treated and NaOH + silane treated fibers showed the highest tensile strength values. Finally, experimental tensile strength values of composites were compared with those values obtained using micromechanical models.  相似文献   

7.
The long term performance of composite materials is highly desired for their expanding application range. Tuning the interphase properties has been proven to be a practical way to enhance the performance of composites. In this study, short glass fibre (GF) reinforced polypropylenes (PPs) with improved hygrothermal durability were obtained by incorporating NaBF4 into the sizing and thus the interphases of GF/PP composites. Detailed investigations were performed on the surface properties of sized GFs and the mechanical properties of virgin and aged composites. It was found that the retention in both ultimate tensile strength and Charpy impact toughness of aged composites monotonically increased with increasing NaBF4 content. The improvement in hygrothermal durability was related to the enhanced fibre/matrix adhesion strength induced by the presence of NaBF4 as indentified by fracture surface analysis using field-emission scanning electron microscopy and single fibre pull-out test.  相似文献   

8.
Growing carbon nanotubes (CNTs) on the surface of fibers has the potential to modify fiber–matrix interfacial adhesion, enhance the composite delamination resistance, and possibly improve its toughness and any matrix-dominated elastic property as well. In the present work aligned CNTs were grown upon ceramic fibers (silica and alumina) by chemical vapor deposition (CVD) at temperatures of 650 °C and 750 °C. Continuously-monitored single fiber composite (SFC) fragmentation tests were performed on pristine as well as on CNT-grown fibers embedded in epoxy. The critical fragment length, fiber tensile strength at critical length, and interfacial shear strength were evaluated. Significant increases (up to 50%) are observed in the fiber tensile strength and in the interfacial adhesion (which was sometimes doubled) with all fiber types upon which CNTs are CVD-grown at 750 °C. We discuss the likely sources of these improvements as well as their implications.  相似文献   

9.
Interphases exist in hybrid materials and significantly influence their mechanical performance. To find a bridge between the microscopic and macroscopic mechanical properties, this work investigates the microscopic nature of glass fiber surfaces and glass/CBT interphases in terms of topography, fractography, and adhesion properties. The variations in glass fiber surface properties result from the different sizings. Using the single fiber pull-out test, AFM, and ζ potential tests, it is shown that the interfacial bond strengths in CBT resin composites can vary depending on the kind of sizing formulation and properties. The greatest adhesion strength is achieved by aminosilane sizings with epoxy resin film former. The surface roughness of the fibers can be varied by sizings with different content and ζ potential values, which has no significant contribution to interphase adhesion strength from ‘mechanical interlocking’. For the systems with film formers, cohesive failure occurs and similar values of both interfacial adhesion strength, τd, and fracture energy release rate, Gic, are obtained, in which τd approaches the shear yield strength of CBT matrix. A further enhancement of interfacial adhesion is limited by the mechanical properties and the non-homogeneous microstructure of CBT resin due to the less-than-perfect CBT polymerization.  相似文献   

10.
The degree of fiber–matrix adhesion and its effect on the mechanical reinforcement of short henequen fibers and a polyethylene matrix was studied. The surface treatments were: an alkali treatment, a silane coupling agent and the pre-impregnation process of the HDPE/xylene solution. The presence of Si–O–cellulose and Si–O–Si bonds on the lignocellulosic surface confirmed that the silane coupling agent was efficiently held on the fibres surface through both condensation with cellulose hydroxyl groups and self-condensation between silanol groups.

The fiber–matrix interface shear strength (IFSS) was used as an indicator of the fiber–matrix adhesion improvement, and also to determine a suitable value of fiber length in order to process the composite with relative ease. It was noticed that the IFSS observed for the different fiber surface treatments increased and such interface strength almost doubled only by changing the mechanical interaction and the chemical interactions between fiber and matrix.

HDPE-henequen fiber composite materials were prepared with a 20% v/v fiber content and the tensile, flexural and shear properties were studied. The comparison of tensile properties of the composites showed that the silane treatment and the matrix-resin pre-impregnation process of the fiber produced a significant increase in tensile strength, while the tensile modulus remained relatively unaffected. The increase in tensile strength was only possible when the henequen fibers were treated first with an alkaline solution. It was also shown that the silane treatment produced a significant increase in flexural strength while the flexural modulus also remained relatively unaffected. The shear properties of the composites also increased significantly, but, only when the henequen fibers were treated with the silane coupling agent. Scanning electron microscopy (SEM) studies of the composites failure surfaces also indicated that there is an improved adhesion between fiber and matrix. Examination of the failure surfaces also indicated differences in the interfacial failure mode. With increasing fiber–matrix adhesion the failure mode changed from interfacial failure and considerable fiber pull-out from the matrix for the untreated fiber to matrix yielding and fiber and matrix tearing for the alkaline, matrix-resin pre-impregnation and silane treated fibers.  相似文献   


11.
选取5种国产玄武岩纤维,采用X射线荧光光谱法和纤维单丝拉伸测试等方法,研究200~800℃空气气氛和氮气气氛处理前后纤维的化学成分、物理特性和拉伸性能等变化,以揭示玄武岩纤维的耐高温性能。结果表明:空气气氛下高温处理后由于表面处理剂的去除,玄武岩纤维表面更加光滑,直径略微变小,同时质量减少;SiO_2,Al_2O_3质量分数减小,而FeO+Fe_2O_3,CaO,MgO质量分数都增大,其中FeO+Fe_2O_3的质量分数增加最多,增幅最大达到21%。200℃处理后玄武岩纤维单丝拉伸强度有一定降低,强度保留率最大为98.3%,400℃处理后强度明显下降,强度保留率最高达到64.6%,800℃处理后强度保留率均不足20%。此外,纤维断裂伸长率随温度的升高而减小,弹性模量增大。与空气气氛相比,氮气气氛下纤维强度保留率更高,拉伸性能更稳定。  相似文献   

12.
This paper presents morphology, physical and strength properties of piassava fiber, a very rigid fiber having a potential to be used as composite reinforcement. Composites of continuous and aligned piassava fibers with and without alkali treatment dispersed in epoxy matrix were subjected to three point bend, tensile, and Izod impact tests. Composites with fibers above 20 vol.% showed an effective reinforcement behavior both in flexural and tensile tests, while the impact energy linearly increased for the amount of piassava fibers used in this study. Fractographic study revealed a relatively weaker fiber/matrix adhesion acting as preferential site for crack nucleation. Evidence was also found for crack arrest by the fiber above 20 vol.%. This, together with spiny surface protrusion in the piassava fibers, was found to be responsible for the reinforcement of the epoxy composites.  相似文献   

13.
为提高芳纶纤维与复合材料基体间的界面强度,首先,使用LiCl乙醇溶液处理芳纶纤维一定时间;然后,对LiCl处理芳纶纤维表面的化学组成、微观形貌、单丝拉伸强度及芳纶纤维/环氧树脂复合材料的界面性能等进行了测试分析。结果表明:使用LiCl乙醇溶液处理芳纶纤维后,芳纶纤维表面的含氮官能团含量增加;处理后,芳纶纤维表面有刻蚀出的沟槽,表面粗糙度增大,进而改善了芳纶纤维与环氧树脂基体的界面粘接性能,使芳纶纤维/环氧树脂复合材料的层间剪切强度由处理前的21.75 MPa提升到37.98 MPa;最佳处理时间为3~4 h,而处理时间过长会导致芳纶纤维的单丝拉伸强度及复合材料的层间剪切强度下降。所得结论证实使用LiCl处理芳纶纤维是一种有效的表面改性方法。   相似文献   

14.
To assess the effect of carbon nanotube (CNT) grafting on interfacial stress transfer in fiber composites, CNTs were grown upon individual carbon T-300 fibers by chemical vapor deposition. Continuously-monitored single fiber composite (SFC) fragmentation tests were performed on both pristine and CNT-decorated fibers embedded in epoxy. The critical fragment length, fiber tensile strength at critical length, and interfacial shear strength were evaluated. Despite the fiber strength degradation resulting from the harsh CNT growth conditions, the CNT-modified fibers lead to a twofold increase in interfacial shear strength which correlates with the nearly threefold increase in apparent fiber diameter resulting from CNT grafting. These observations corroborate recently published studies with other CNT-grafted fibers. An analysis of the relative contributions to the interfacial strength of the fiber diameter and strength due to surface treatment is presented. It is concluded that the common view whereby an experimentally observed shorter average fragment length leads to a stronger interfacial adhesion is not necessarily correct, if the treatment has changed the fiber tensile strength or its diameter.  相似文献   

15.
采用基于WND(Wagner-Nairn-Detassis)能量模型的单丝断裂法,测试了5种国产炭纤维、2种国外炭纤维与航空结构用环氧树脂复合体系的界面断裂能,通过SEM,AFM,IR以及XPS等手段分析了7种炭纤维的表面物理化学特性,并研究了炭纤维特性与界面断裂能的关联。结果表明:对于所研究的炭纤维/环氧树脂体系,去除炭纤维表面上浆剂后界面断裂能下降,说明上浆剂可以在一定程度上提高界面的韧性。此外,实验范围内,纤维拉伸强度较高时,测得的界面断裂能较高,炭纤维表面粗糙度较高时,测得界面断裂能较高,说明纤维拉伸性能和表面粗糙度对界面韧性有重要影响,而与这两种因素相比,上浆剂的种类影响相对较小。研究结果为高性能国产炭纤维的研发和炭纤维/树脂匹配性的评价提供了重要的实验数据。  相似文献   

16.
Nano-SiO2 particles were used to modify epoxy emulsion sizing of carbon fibers to improve the interfacial properties of carbon fibers reinforced epoxy composites. The mechanical interfacial strength between fibers and matrix was investigated by the single fiber fragmentation test and the 3-point short beam shear test, respectively. Dynamic contact angle analysis (DCAA), X-ray photoelectron spectrometry (XPS) and atomic force microscopy (AFM) were performed on the carbon fibers with unmodified sizing and nano-SiO2 modified sizing. The results indicated that modified sizing with nano-SiO2 slightly increased the surface energy, the hydroxyl functional group and the surface roughness of carbon fibers compared to unmodified sizing, so that the interfacial shear strength (IFSS) of the single fiber composites and the interlaminar shear strength (ILSS) of composites were enhanced. SEM images of fracture sections of composites proved powerfully that the interfacial adhesion between fibers and matrix was improved after nano-SiO2 modified emulsion sizing treatment.  相似文献   

17.
The interfacial micromechanics of single poly(p-phenylene terephthalamide (PPTA) and poly(p-phenylene benzobisoxazole (PBO) fibers embedded in an epoxy resin has been investigated by determining the interfacial shear stress distributions along the fiber length. The effects of an oxygen plasma treatment on the interfacial shear stress of the fiber-epoxy systems are analyzed. Raman spectroscopy was used to map the stress distributions along the fiber when the composite is subjected to a small axial tensile strain (3.5% for PPTA and 2.5% for PBO). The quality of the interface or adhesion was improved after the surface treatment, supporting the ability of plasma oxidation to enhance the adhesion of high-performance fibers to epoxy resins. The tensile behavior of fiber-reinforced systems was different in each case. PPTA reinforcements underwent fragmentation, likely by fiber microfailure, whereas debonding or bridging is the most probable fragmentation mechanism in the case of PBO.  相似文献   

18.
It is well established that the molecular weight of recycled PP decreases significantly as compared to the virgin material. Hence this study involved 2 PP grades of different molecular weights in order to simulate the recycling process. The effect of weight–average molecular weight on interfacial adhesion between GF and PP was investigated. Tensile test was done and the fiber length distribution around the fracture zone in both composites was compared with the distributions from similar locations of unstressed composites. The effect of PP-grafted maleic anhydride coupling agent was also studied. It was found that a decrease in weight–average molecular weight of PP improved interfacial adhesive strength between GF/PP. The lower molecular weight matrix has a lower viscosity that enables its molecules to penetrate easily into the silane interphase. In that case, the interfacial area that is available for coupling is higher, leading to a more effective coupling. The higher interfacial shear strength between the glass fiber and the lower molecular weight matrix induced more breakage of the glass fiber during tensile test.  相似文献   

19.
Tribological behaviors of two PTFE-based composites reinforced with carbon fibers and basalt fibers sliding against stainless steel under water lubrication were investigated and compared with those of pure PTFE. Results showed that carbon fibers were well bonded with PTFE matrix by dendritic PTFE nano-ribbons in a Boston ivy-like manner, but the basalt fibers were poorly bonded with the matrix. Due to the great accelerating effect of poor fiber/matrix interfacial adhesion on water absorption, BF/PTFE with the highest crystallinity unexpectedly showed the highest water absorption, resulting in serious matrix plasticization and degradation of fiber/matrix interfacial adhesion. As a result, as the reinforcement failure of basalt fibers occurred, BF/PTFE exhibited the highest wear rate. Instead, because good fiber/matrix interfacial adhesion was favor of the resistance to water intrusion, CF/PTFE composite was not dominated by remarkable matrix plasticization and fiber/matrix interface degradation, and showed the lowest wear rate.  相似文献   

20.
The main aims of this work were to study the effect of surface modifications on sisal fiber properties as well as on fiber/poly (lactic acid) (PLA) interface adhesion. For this purpose, alkali, silane and combination of both treatments were applied to sisal fiber. The effects of treatments on fiber thermal stability, fiber wettability, morphology, tensile properties and on fiber/PLA interfacial shear strength (IFSS) were studied. After treatments IFSS values improved at least 120%, however, tensile strength of sisal fibers decreased. Alkali treatment removed some non-cellulosic components (hemicelluloses, lignin) as confirmed by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The removal of non-cellulosic materials led to fibrillated and rough morphology as observed by optical microscopy (OM). FTIR spectrum of silane treated fibers showed a band related to silane amino group and contact angle measurements confirmed that fibers became more hydrophobic. All treatments used improved fiber/PLA adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号