首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural, half-metallic and elastic properties of the half-Heusler compounds NiMnM (M = Sb, As and Si) and IrMnAs were investigated using first-principles calculations within the generalized gradient approximation (GGA) based on density function theory (DFT). The most stable lattice configurations about site occupancy are (Ni)4a(Mn)4c(Sb)4d, (Ni)4a(Mn)4c(As)4d, (Ni)4a(Mn)4c(Si)4d and (Ir)4a(Mn)4c(As)4d, respectively, and the exchange of elements in Wyckoff position 4c and 4d results in an identical (symmetry-related) phase. The half-Heusler compounds show half-metallic ferromagnetism with a half-metallic gap of 0.168 eV, 0.298 eV, 0.302 eV and 0.109 eV, respectively, and the total magnetic moments (Mtot) are 4.00 μB, 4.00 μB, 3.00 μB and 3.00 μB per formula unit, respectively, which agree well with the Slater–Pauling rule based on the relationship of valence electrons. The compound (Ir)4a(Mn)4c(As)4d with half-metallic ferromagnetic character was reported for the first time. The individual elastic constants, shear modulus, Young's moduli, ratio B/G and Poisson's ratio were also calculated. The compounds are ductile based on the ratio B/G. The Debye temperatures derived from the average sound velocity (νm) are 327 K, 332 K, 434 K and 255 K, respectively. The predicted Debye temperature for NiMnSb agrees well with the available experimental value, and the Debye temperatures for the rest three compounds were reported for the first time.  相似文献   

2.
The structural, electronic, elastic, mechanical and thermal properties of the isostructural and isoelectronic nonmagnetic RESn3 (RE = Y, La and Ce) compounds, which crystallize in AuCu3-type structure, are studied using first principles density functional theory based on full potential linearized augmented plane wave (FP-LAPW) method. The calculations are carried out within PBE-GGA, WC-GGA and PBE-sol GGA for the exchange correlation potential. Our calculated ground state properties such as lattice constant (a0), bulk modulus (B) and its pressure derivative (B′) are in good agreement with the experimental and other available theoretical results. We first time predict the elastic constants for these compounds using different approximations of GGA. All these RESn3 compounds are found to be ductile in nature in accordance with Pugh's criteria. The computed electronic band structures and density of states show metallic character of these compounds. The elastic properties including Poisson's ratio (σ), Young's modulus (E), shear modulus (GH) and anisotropy factor (A) are also determined using the Voigt–Reuss–Hill (VRH) averaging scheme. The average sound velocities (vm), density (ρ) and Debye temperature (θD) of these RESn3 compounds are also estimated from the elastic constants. We first time report the variation of elastic constants, elastic moduli, Cauchy's pressure, sound velocities and Debye temperatures of these compounds as a function of pressure.  相似文献   

3.
The structural and elastic properties of the L12 structure Ir3Nb and Ir3V under pressure have been investigated by means of the first principles calculations based on the density functional theory within the generalized gradient approximation. The lattice parameters of Ir3Nb and Ir3V obtained by minimization of the total energy are consistent with the available experimental and other theoretical results. In addition, the elastic constants (C11, C12, C44) of Ir3Nb and Ir3V show that they are mechanical stable structures under pressure. The values of B/G exhibit an upward trend with increasing pressure, which means its ductility increased. When the pressure reaches 45 GPa, the Cauchy pressures and B/G values reveal that Ir3Nb and Ir3V change from brittle to ductile. Finally, through quasi-harmonic Debye model, the temperature and pressure dependences of thermodynamic properties are predicted in a wide pressure (0–50 GPa) and temperature (0–1200 K) ranges.  相似文献   

4.
The structural, electronic and elastic properties of four RuX (X = Sc, Ti, V and Zr) intermetallic compounds have been investigated by using density functional theory within full potential linearized augmented plane wave method and using generalized gradient approximations in the scheme of Perdew, Burke and Ernzrhof (PBE), Wu and Cohen (WC) and Perdew et al. (PBEsol) for the exchange correlation potential. The relative phase stability in terms of volume-energy and enthalpy-pressure for these compounds is presented for the first time in three different (B1, B2 and B3) structures. The total energy is computed as a function of volume and fitted to Birch equation of states to find the ground state properties such as lattice constant (a0), bulk modulus (B) and its pressure derivative (B′). It is found that the lattice parameters in B2-phase agree well with the existing experimental and previous theoretical results. The second order elastic constants (SOECs) are also predicted for the above compounds. All the four compounds show ductile behavior. The ductility of these compounds has been analyzed using Pugh's rule. From the plots of electronic density of states (DOS), it can be concluded that these intermetallic compounds are metallic in nature.  相似文献   

5.
The structural, elastic and thermodynamic properties of FeB, Fe2B, orthorhombic and tetrahedral Fe3B, FeB2 and FeB4 iron borides are investigated by first-principle calculations. The elastic constants and polycrystalline elastic moduli of Fe–B compounds are usually large especially for FeB2 and FeB4, whose maximum elastic constant exceeds 700 GPa. All of the six compounds are mechanically stable. The Vickers hardness of FeB2 is estimated to be 31.4 GPa. Fe2B and FeB2 are almost isotropic, while the other four compounds have certain degree of anisotropy. Thermodynamic properties of Fe–B compounds can be accurately predicted through quasi-harmonic approximation by taking the vibrational and electronic contributions into account. Orthorhombic Fe3B is more stable than tetrahedral one and the phase transition pressure is estimated to be 8.3 GPa.  相似文献   

6.
We report the structural, electronic, bonding, elastic and mechanical properties of nine scandium intermetallic compounds, ScTM (TM = Co, Rh, Ir, Ni, Pd, Pt, Zn, Cd and Hg), using ab initio density functional theory with the generalized gradient approximation for exchange and correlation potentials. The calculated structural parameters, such as the lattice constant (a0), bulk modulus (B) and its pressure derivative (B0) and elastic constants, are calculated using the CsCl-(B2 phase) structure. The electronic and bonding properties of the ScX compounds are quantitatively analyzed using band structures, DOS, Fermi surfaces and contour plots. The mechanical properties and ductile behaviors of these compounds are also predicted based on the calculated elastic constants.  相似文献   

7.
The transition phase of MgTe from rock salt structure (B1) to cesium chloride structure (B2) is investigated by ab initio plane-wave pseudopotential density functional theory method. The thermodynamic properties of the B1 and B2 structures are obtained through the quasi-harmonic Debye model. Our results indicated that MgTe undergoes a structural phase transition from B1 to B2 at about 90.32 GPa. The dependences of the relative volume V/V0 on the pressure P, the Debye temperature Θ and heat capacity CV on the pressure P, the Grüneisen parameter ratio (γ − γ0)/γ0 on pressure P, the bulk moduli ratio (B − B0)/B0 on pressure P, as well as the heat capacity CV on the temperature T are estimated.  相似文献   

8.
A systematic investigation on structural, elastic and electronic properties of Rh–Zr intermetallic compounds is conducted using first-principles electronic structure total energy calculations. The equilibrium lattice parameters, enthalpies of formation (Efor), cohesive energies (Ecoh) and elastic constants are presented. Of the eleven considered candidate structures, Rh4Zr3 is most stable with the lowest Efor. The two orthogonal-type, relative to the CsCl-type, are the competing ground-state structures of RhZr. The result is in agreement with the experimental reports in the literature. The analysis of Efor and mechanical stability excludes the presence of Rh2Zr and RhZr4 at low temperature mentioned by .Curtarolo et al. [Calphad 29, 163 (2005)]. It is found that the bulk modulus B increases monotonously with Rh concentration, whereas all other quantities (shear modulus G, Young's modulus E, Poisson's ratio σ and ductility measured by B/G) show nonmonotonic variation. RhZr2 exhibits the smallest shear/Young's modulus, the largest Poisson's ratio and ductility. Our results also indicate that all the Rh–Zr compounds considered are ductile. Furthermore, the detailed electronic structure analysis is implemented to understand the essence of stability.  相似文献   

9.
Using a density functional scheme, we have investigated for the first time the structural, electronic, elastic and thermal properties of the ideal cubic antiperovskite carbides ACRu3 (A = V, Nb, Ta). The computed equilibrium lattice constants are in excellent agreement with the experimental data. The electronic band structures and densities of states profiles show that the studied compounds are conductors. Analysis of atomic site projected local density of states reveals that the bonding character may be described as a mixture of covalent–ionic and, due to the d states in the vicinity of the Fermi level, metallic. Pressure dependence up to 50 GPa of the single crystal and polycrystalline elastic constants has been investigated in details. Analysis of the B/G ratios shows that VCRu3 is slightly brittle while NbCRu3 and TaCRu3 are slightly ductile. We have estimated the sound velocities in the principal directions. Through the quasi-harmonic Debye model, in which the phononic effects are taken into account, the temperature and pressure effects on the lattice constant, bulk modulus, heat capacity and Debye temperature are performed.  相似文献   

10.
The effects of applied pressures on the structural, mechanical and electronic properties of TiB compound were studied using the first-principles method based on the density functional theory. The results showed the pressures have the significant effects on the mechanical properties and electronic properties of TiB phase. The calculated structural and mechanical parameters (i.e., bulk modulus, shear modulus, Young's modulus, Poisson's ratio and Debye temperature) were in good agreement both with the previously reported experimental and theoretical results at zero pressure. Additionally, all these parameters presented the linearly increasing dependences on the external pressure. The B/G ratios signified the TiB crystals should exhibit the brittle deformation behavior at 0–100 GPa. The universal anisotropic index indicated the TiB compound was elastically isotropic under zero pressure, and may become anisotropic at higher pressures. Further, the density of states and Mulliken charge of TiB were discussed. The bonding nature in TiB was a combination of metallic, ionic and covalent at zero pressure. The metallic component was derived from free-electron transfer from the Ti4s to Ti3d and Ti3p states. The ionic component was originated from the charge transfer from Ti to B atoms. The covalent component had two sources. One was from the B2s–B2p hybridization in the B atomic chains. The other one was from B2p–Ti3d bonding hybridization. Under higher pressures, the ionic and covalent bonds were both improved with the rising of pressures. This should be the fundamental reason for the enhanced mechanical properties in the TiB compound. At the same time, the metallic bond kept leveled to ensure the electric conductivity.  相似文献   

11.
Three competing structures (C11b, C16 and E93) of intermetallic Zr2Cu have been systematically investigated by first-principles calculations and quasi-harmonic Debye model. Both the calculated equation of states (EOS) and pressure–enthalpy results indicate a structural phase transition from C11b to C16 phase at around 11–14 GPa. The calculated equilibrium crystal parameters and elastic constants are in consistence with available experimental or theoretical data. All three phases are mechanically stable according to the elastic stability criteria, and ductile according to Pugh's ratio, while the ambient-stable C11b phase shows a higher elastic anisotropy. Furthermore, differences in the nature of bonding between three competing structures are uncovered by electron density topological analysis. C11b Zr2Cu possesses an intriguing pseudo BaFe2As2-type structure with the charge density maxima at Zr tetrahedral interstices serving as Fe-position pseudoatoms; C16 Zr2Cu contains Zr-pair configurations bonded through bifurcated Zr–Zr bonding paths; while the E93 phase has only conventional straight bonding. Additionally, through quasi-harmonic Debye model, the pressure and temperature dependences of the bulk modulus, specific heat, Debye temperature, Grüneisen parameter and thermal expansion coefficient for three phases are obtained and discussed.  相似文献   

12.
Based on first-principles calculations, the effects of various Ni concentrations on the structural, elastic, electronic and thermodynamic properties of hexagonal η-Cu6Sn5 compound have been systematically investigated. The results demonstrate that higher Ni concentration in the η-Cu6−xNixSn5 (x = 0, 0.5, 1, 1.5 and 2) leads to thermodynamically stable compounds, and Ni atoms preferentially occupy Cu2 + Cu1c sites forming the η-Cu4Ni2Sn5 compound. It is also found that the unit cell volume and lattice parameter of the ‘a’ axis decrease with increasing Ni concentration, which are consistent with the other experimental results. Furthermore, the polycrystalline elastic properties are obtained from single-crystal elastic constants. Our results indicate that the addition of Ni enhances the mechanical stability, brittleness, modulus and Debye temperatures of η-Cu6Sn5 compound. Analyzing the electronic structure and charge density distribution provides the explanation that Ni develops distinct bonding energy to Cu and Sn in the structure.  相似文献   

13.
The structural behaviour of Pd40Cu30Ni10P20 bulk metallic glass as a function of hydrostatic pressure up to 47.4 GPa was investigated by means of in situ high energy synchrotron X-ray diffraction patterns. Monotonic changes are observed in the diffraction data without any indication of a phase transition. In real space all maxima of the atomic pair correlation function including the nearest neighbour distance are decreasing and scale with pressure. The volume as function of hydrostatic pressure is extracted from the diffraction data. For the largest hydrostatic pressure of 47.4 GPa the volume is reduced by 18%. The bulk modulus B0 = 178 GPa was calculated from the diffraction data. The dependence of volume on pressure of Pd40Cu30Ni10P20 metallic glass can be well described by the Birch–Murnaghan equation of state.  相似文献   

14.
First-principles calculations of the crystal structure and the elastic properties of α-Ta4AlC3 have been carried out with the plane-wave pseudopotential density functional theory method. The calculated values are in very good agreement with experimental data as well as with some of the existing model calculations. The pressure dependence of the elastic constants cij, the aggregate elastic moduli (B, G, E), the Poisson's ratio, and the elastic anisotropy has been investigated. Using the quasi-harmonic Debye model considering the phonon effects, the temperature and pressure dependencies of isothermal bulk modulus, and the thermal expansions, and Grüneisen parameters, as well as Debye temperatures are investigated systematically in the ranges of 0–60 GPa and 0–1500 K as well as compared to available data.  相似文献   

15.
By means of first principles calculations, we have studied the structural, elastic, and phonon properties of the Al12X (X = Mo, Tc, Ru, W, Re, and Os) compounds in cubic structure. The elastic constants of these compounds are calculated, then bulk modulus, shear modulus, Young's modulus, Possion's ratio, Debye temperature, hardness, and anisotropy value of polycrystalline aggregates are derived and relevant mechanical properties are compared with the available theoretical ones. Furthermore, the phonon dispersion curves, mode Grüneisen parameters, and thermo-dynamical properties such as free energy, entropy and heat capacity are computed and the obtained results are discussed in detail.  相似文献   

16.
An attempt has been made to develop a new metallic glass (MG) that combines high hardness with wear resistance. Refractory metallic films of W33Ni32B35 (at.%) have been deposited on stainless steel and Si substrates by dc magnetron sputtering. The alloy films are glassy, have a high crystallization temperature of 873 °C and rank among the very hard metallic materials (∼24 GPa). Importantly, this MG also shows excellent wear resistance, approaching that of standard tribological materials like TiN and hence it represents one of the most wear-resistant known metallic materials. Based on its unique combination of high strength and low elastic modulus, other potential applications are also discussed.  相似文献   

17.
First principles calculation and quasi-harmonic Debye model were used to obtain more physical properties of zirconium carbide under high temperature and high pressure. The results show that the B1 structure of ZrC is energetically more favorable with lower heat of formation than the B2 structure, and that mechanical instability and positive heat of formation induce the inexistence of the B2 structure at normal pressure. It is also found that the B1 structure would transform to the B2 structure under high pressure below the critical point of V/V0=0.570. In addition, various thermodynamic and elastic properties of ZrC are obtained within the temperature range of 0–3000 K and the pressure range of 0–100 GPa. The calculated results not only are discussed and understood in terms of electronic structures, but also agree well with corresponding experimental data in the literature.  相似文献   

18.
Elastic constants (Cij's) of 25 compounds in the Mg–X (X = As, Ba, Ca, Cd, Cu, Ga, Ge, La, Ni, P, Si, Sn, and Y) systems have been predicted by first-principles calculations with the generalized gradient approximation and compared with the available experimental data. Ductility and the type of bonding in these compounds are further analyzed based on their bulk modulus/shear modulus ratios (B/G), Cauchy pressures (C12C44), and electronic structure calculations. It is found that MgNi2 and MgCu2 have very high elastic moduli. Mg compounds containing Si, Ge, Pb, Sn, and Y, based on their B/G ratios, are inferred as being brittle. A metallic bonding in MgCu2 and a mixture of covalent/ionic bond character in Mg2Si, as inferred from their electronic structures, further explain the corresponding mechanical properties of these compounds.  相似文献   

19.
In this work, first principles calculation of structural, electronic magnetic and elastic properties of the half-metallic ferromagnetic Heusler compound Co2MnSi are presented. We have applied the full-potential linearized augmented plane waves plus local orbitals (FP-L/APW+lo) method based on the density functional theory (DFT). For the exchange and correlation potential generalized-gradient approximation (GGA) is used. The computed equilibrium lattice parameters agree well with the available theoretical and experimental data. Elastic constants and their pressure dependence are also calculated. The calculated total magnetization of 5 μB is in excellent agreement with recent experiments. We also presented the thermal effects using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. Temperature and pressure effects on the structural parameters, heat capacities, entropy, thermal expansion coefficient, and Debye temperatures are determined from the non-equilibrium Gibbs functions.  相似文献   

20.
An energetics database of binary magnesium compounds has been developed from first-principles calculations. The systems investigated include Mg–X (X = As, Ba, Ca, Cd, Cu, Dy, Ga, Ge, La, Lu, Ni, Pb, Sb, Si, Sn and Y). The calculated lattice parameters and enthalpies of formation of binary compounds in these systems are compared with both experimental data and thermodynamic databases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号