首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Wind power potential by itself is not a good indicator of the suitability of a region for wind power generation for different purposes. Economic attractiveness is a better indicator in this regard as it stimulates the involvement of private businesses in this sector. Naturally, the shorter is the payback period or the time required to reach profitability, the more attractive will be the project. Considering the high wind energy potential of some regions of Iran, this study evaluates the wind energy available for generating electricity as well as hydrogen by industrial and agricultural sectors in four cities of Ardebil province, namely Ardebil, Khalkhal, Namin, and Meshkinshahr, and then conducts an econometric analysis accordingly. Wind power potentials are evaluated using the energy pattern factor and Weibull distribution function based on 5-year meteorological data of the studied regions. Economic evaluations are performed based on the present worth of incomes and costs, which are estimated for two models of wind turbines with 3.5 and 100 KW rated power. Results indicate that the cities of Namin and Ardebil with wind power densities of respectively 261.68 and 258.99 W/m2 have the best condition. The economic analysis conducted for turbines shows that for Ardebil, installation of the 3.5 KW and 100 KW turbines will have a payback period of 13 and 5 years, respectively. For Khalkhal, Namin, and Meshkinshahr, the only feasible option is installation of the 100 KW turbine, which would result in a payback period of respectively 10.2, 6.1 and 8.7 years. Then it is investigated how much hydrogen can be gained if these private sectors invest in producing hydrogen using nominated wind turbines.  相似文献   

2.
The global market for wind power is expanding faster than any other source of renewable energy. From just 4,800 MW in 1995 raise to fifteen-fold to reach 73,904 MW at the end of 2006. Top five wind electric power generating countries at the end of 2006 were Germany, Spain, United States of America (USA), India and Denmark. Since 1980s, when the first commercial wind turbine was deployed, their capacity, efficiency and visual design have all improved a lot. A modern wind turbine annually produces 180 times more electricity at less than half the cost per unit (kWh) than its equivalent twenty years ago. The largest turbines being manufactured now are of rated power of 5 MW capacity and a rotor diameter of 126 m. Modern turbines are modular and quick to install, whilst wind farms vary in size from a few MW to several hundred MW. Keeping these factors in view, an attempt has been made in this paper to present current advances in wind turbine generator technology. Wind energy scenario in the world in general and in India in particular have been presented. Further the cost components of wind turbine electric generation system have been included.  相似文献   

3.
Recently wind energy has become one of the most important alternative energy sources and is growing at a rapid rate because of its renewability and abundancy. For the clustered wind turbines in a wind farm, significant wind power losses have been observed due to wake interactions of the air flow induced by the upstream turbines to the downstream turbines. One approach to reduce power losses caused by the wake interactions is through the optimization of wind farm layout, which determine the wind turbine positions and control strategy, which determine the wind turbine operations. In this paper, a new approach named simultaneous layout plus control optimization is developed. The effectiveness is studied by comparison to two other approaches (layout optimization and control optimization). The results of different optimizations, using both grid based and unrestricted coordinate wind farm design methods, are compared for both ideal and realistic wind conditions. Even though the simultaneous layout plus control optimization is theoretically superior to the others, it is prone to the local minima. Through the parametric study of crossover and mutation probabilities of the optimization algorithm, the results of the approach are generally satisfactory. For both simple and realistic wind conditions, the wind farm with the optimized control strategy yield 1–3 kW more power per turbine than that with the self-optimum control strategy, and the unrestricted coordinate method yield 1–2 kW more power per turbine than the grid based method.  相似文献   

4.
In this study, the hydrogen production potential and costs by using wind/electrolysis system in P?narba??-Kayseri were considered. In order to evaluate costs and quantities of produced hydrogen, for three different hub heights (50 m, 80 m and 100 m) and two different electrolyzer cases, such as one electrolyzer with rated power of 120 kW (Case-I) and three electrolyzers with rated power of 40 kW (Case-II) were investigated. Levelised cost of electricity method was used in order to determine the cost analysis of wind energy and hydrogen production. The results of calculations brought out that the electricity costs of the wind turbines and hydrogen production costs of the electrolyzers are decreased with the increase of turbine hub height. The maximum hydrogen production quantity was obtained 14192 kgH2/year and minimum hydrogen cost was obtained 8.5 $/kgH2 at 100 m hub height in the Case-II.  相似文献   

5.
This paper presents specific life cycle GHG emissions from wind power generation from six different 5 MW offshore wind turbine conceptual designs. In addition, the energy performance, expressed by the energy indicators Energy Payback Ratio (EPR) Energy Payback Time (EPT), is calculated for each of the concepts.There are currently few LCA studies in existence which analyse offshore wind turbines with rated power as great as 5 MW. The results, therefore, give valuable additional environmental information concerning large offshore wind power. The resulting GHG emissions vary between 18 and 31.4 g CO2-equivalents per kWh while the energy performance, assessed as EPR and EPT, varies between 7.5 and 12.9, and 1.6 and 2.7 years, respectively. The relatively large ranges in GHG emissions and energy performance are chiefly the result of the differing steel masses required for the analysed platforms. One major conclusion from this study is that specific platform/foundation steel masses are important for the overall GHG emissions relating to offshore wind power. Other parameters of importance when comparing the environmental performance of offshore wind concepts are the lifetime of the turbines, wind conditions, distance to shore, and installation and decommissioning activities.Even though the GHG emissions from wind power vary to a relatively large degree, wind power can fully compete with other low GHG emission electricity technologies, such as nuclear, photovoltaic and hydro power.  相似文献   

6.
The observed wind at a given site varies continuously as a function of time and season, increasing hub heights, topography of the terrain, prevailing weather condition etc. The quality of wind resource is one of the important site factors to be considered when assessing the wind potential of any location for any energy project. In this study, two wind energy analysis techniques are presented: the use of direct technique where the electrical power outputs of the wind turbines at a time t are estimated using the turbine power curve(s) and the use of statistical-based technique where the power outputs are estimated based on the developed site power curve(s). The wind resource assessment at Darling site is conducted using a 5-min time series weather data collected on a 10 m height over a period of 24 months. Because of the non-linearity of the site's wind speed and its corresponding power output, the wind resources are modeled and the developed site power curve(s) are used to estimate the long term energy outputs of the wind turbines for changing weather conditions. Three wind turbines rating of 1.3 MW, 1.3 MW and 1.0 MW were selected for the energy generation based on the gauged wind resource(s) at 50, 60 and 70 m heights, respectively. The energy outputs at 50 m height using the 1.3 MW WT were compared to the energy outputs at 60 m to determine the standard height for utility scale energy generation at this site. An additional energy generation of 190.71 MWh was available by deploying the same rated turbine at a 60 m height. Furthermore, comparisons were made between the use of turbine and site power curve for wind energy analysis at the considered heights. The results show that the analysis of the energy outputs of the WTs based on the site power curve is an accurate technique for wind energy analysis as compared to the turbine power curve. Conclusions are drawn on the suitability of this site for utility scale generation based on the wind resources evaluation at different heights.  相似文献   

7.
Egypt is one of the Red Sea and Mediterranean countries having windy enough areas, in particular along the coasts. The coastal location Ras Ghareb on the Red Sea has been investigated in order to know the wind power density available for electricity generation. To account for the wind potential variations with height, a new simple estimating procedure was introduced. This study has explicitly demonstrated the presence of high wind power density nearly 900 kW/m2 per year at 100 m of altitude for this region. Indeed, the seasonal wind powers available are comparable to and sometimes higher than the power density in many European cities for wind electricity applications like Vindeby (Denmark) and also America.New technical analysis for wind turbine characteristics have been made using three types of commercial wind turbines possessing the same rotor diameter and rated power to choice the best wind machine suitable for Ras Ghareb station. As per the decreasing the cut-in wind speed for the wind turbine used, the availability factor increases for a given generator. That it could produce more energy output throughout the year for the location.The aim of this research, was to predict the electrical energy production with the cost analysis of a wind farm 150 MW total power installed at Ras Ghareb area using 100 wind turbines model (Repower MD 77) with 1.5 MW rated power. Additionally, this paper developed the methodology for estimating the price of each kWh electricity from the wind farms. Results show that this wind park will produce maximum energy of 716 GWh/year. The expected specific cost equal to 1.5 € cent/kWh is still less than and very competitive price with that produced from the wind farms in Great Britain and Germany and at the international markets of wind power. The important result derived from this study encourages several wind parks with hundreds of megawatts can be constructed at Ras Ghareb region.  相似文献   

8.
Nova Scotia, Canada's community feed-in tariff (COMFIT) scheme is the world's first feed-in tariff program specifically targeting locally-based renewable energy projects. This study investigated selected turbine capacities to optimize electricity production, based on actual wind profiles for three sites in Nova Scotia, Canada (i.e., Sydney, Caribou Point, and Greenwood). The turbine capacities evaluated are also eligible under the current COMFIT-large scheme in Nova Scotia, including 100 kW, 900 kW and 2.0 MW turbines. A capital budgeting model was developed and then used to evaluate investment decisions on wind power production. Wind duration curves suggest that Caribou Point had the highest average wind speeds but for shorter durations. By comparison, Sydney and Greenwood had lower average wind speeds but with longer durations. Electricity production cost was lowest for the 2.0 MW turbine in Caribou Point ($0.07 per kWh), and highest for the 100 kW turbine located in Greenwood ($0.49 per kWh). The most financially viable wind power project was the 2.0 MW turbine assumed to operate at 80 m hub height in Caribou Point, with NPV=$251,586, and BCR=1.51. Wind power production for the remaining two sites was generally not financially feasible for the turbine capacities considered. The impact of promoting local economic development from wind power projects was higher in a scenario under which wind turbines were clustered at a single site with the highest wind resources than generating a similar level of electricity by distributing the wind turbines across multiple locations.  相似文献   

9.
One of the most appropriate ways for energy storage is producing hydrogen from renewable resources. Wind energy is recognized as one of the widely used renewable energy resources. This paper investigates the use of wind energy for producing hydrogen in Iran. To achieve this, the country is divided into five major regions: center, north, south, east and west. The performance of three large-scale commercial wind turbines, ranging from 1500 kW to 3000 kW at hub height of 80 m and four large-scale wind turbine ranging from 2000 kW to 4500 kW at hub height of 120 m are evaluated for producing hydrogen in 150 wind stations in Iran. All wind data were recorded based on 10-min time intervals for more than one year at different wind mast heights. For estimating Weibull parameters, the Standard Deviation Method (SDM), Empirical Method of Lysen (EML) and Power Density Method (PDM) are used. An extrapolation method is used to determine the shape and the scale parameters of the Weibull distribution at the high attitudes of 80 m and 120 m. Then, power law and surface roughness exponents, capacity factor, annual energy production and annual hydrogen production for the wind sites are determined. The results indicate that rated power is not the only determinative parameter and the highest hydrogen production is from the GW-109/2500 wind turbine at the hub height of 80 m and from E112/4500 at the hub height of 120 m. For better assessment, the amount of hydrogen production is depicted in Geographic Information Science (GIS) maps using power production of the seven wind turbine models. Next by analyzing these GIS maps, it is found that there are significant potentials in north, north-west, east and south of Iran for producing hydrogen from wind energy.  相似文献   

10.
Wind resource assessment of the Jordanian southern region   总被引:1,自引:0,他引:1  
Eyad S. Hrayshat   《Renewable Energy》2007,32(11):1948-1960
Wind data in terms of annual, seasonal and diurnal variations at Queira, which is located in the southern part of Jordan was studied and analyzed. For this purpose, long-term wind speed data for a period of 12 years (1990–2001) was used. The analysis showed that the seasonal and diurnal pattern of wind speed matches the electricity load pattern of the location. Higher winds of the order of 6 m/s and more were observed during both the summer months of the year (May–August) and peak hours (1100–1500) of the day. The wind duration availability is discussed as the number of hours during which the wind remained in certain wind speed intervals. The possibility of electricity generation from wind power at Queira was carried out using three different wind energy systems of sizes 100, 22 kW rated power, and a wind farm consisting of 25 small wind turbines; each of 4 kW rated power with hub heights of 20, 30, and 40 m. The energy production analysis showed higher production from the wind farm with a 20 m hub height than the production from the other two wind turbines. Similarly, the cost analysis showed that the lowest generation costs of 1 kWh were obtained for the wind farm compared to the other two wind turbines. The possibility of water pumping using the wind farm was also investigated. The results showed that water pumping using wind turbines is an appropriate alternative for the photovoltaic water pumping in the region.  相似文献   

11.
Analysis of the wind characteristics in Ras Benas city located on the east coast of Red Sea in Egypt using measured data (wind, pressure and temperature) and Weibull function were made.Statistical analysis model to evaluate the wind energy potential was introduced. According to the power calculations done for the site, the annual mean wind density is 315 kW/m2 at a height of 70 m above ground level. This station has a huge wind energy potential for electricity generation, especially during spring and summer seasons, comparing with some European countries.In addition, the monthly wind turbine efficiency parameter (ηmonthly) has been calculated by using a commercial wind turbine 1 MW with 70 m hub height to help designers and users in evaluating the potentialities and choosing the suitable wind turbine for the considered site. The use of wind turbine with capacity greater than 1000 kW at this station was recommended.Ras Benas station was selected to install 30 MW-wind farm consists of 20 commercial wind turbines (Nordex S 77) with hub heights and Rotor diameter were 100 and 77 m, respectively. This site has annual wind speed more than 9.8 m/s at 100 m height and enough area to locate these turbines.The estimated energy production using WASP Program of these wind farm was 130 GWh/year. Furthermore, the production costs was found 1.3€ cent/kWh, which is a competition price at the wind energy world market.  相似文献   

12.
The air discharged from ventilation systems is a high potential wind resource for generating electricity in countries where wind speed is unreliable or weak, such as in Thailand. The air discharged from ventilation systems produces consistent and high-speed wind when benchmarked against natural wind. However, the limitations of conventional wind turbines are that they have negative impacts on the ventilation system and are inconvenient to install in many areas. The innovative shaftless horizontal axis wind turbine (SHWT) introduced in this article has been designed to close the gap between the wind source and the conventional wind turbines in this process. The concept design shows how it could be mounted next to sources of waste wind, requiring only a small space for installation. An open hole is provided to enable airflow to be discharged into the environment. This SHWT has high market potential for utilizing man-made wind to generate electricity from an alternative source which supports sustainable energy development. The purpose of this study is to demonstrate the concept design of a prototype SHWT used for energy recovery from the discharged air of a ventilation system. How the rotor and stator design of the SHWT optimize wind turbine performance and minimize the negative effects on the ventilation system efficiency are also addressed in this study. The performance of the SHWT is demonstrated in a lab-scale test using the type of propeller fan that is generally applied in many sectors in Thailand. The results showed that the SHWT was successful in generating electricity and produced minimal negative effects on the ventilation system's performance. The maximum power output of the prototype SHWT is 7.4 W at a rotational speed of 1644 rpm using eight sets of magnets and 5.1 m/s wind speed. The maximum wind turbine efficiency is 51%. However, it still requires further optimization to enhance the SHWT performance.  相似文献   

13.
This paper describes a new wind turbine simulator for dynamic conditions. The authors have developed an experimental platform to simulate the static and dynamic characteristics of real wind energy conversion system. This system consists of a 3 kW dc motor, which drives a synchronous generator. The converter is a 3 kW single-phase half-controlled converter. MATLAB/Simulink real time control software interfaced to I/O board and a converter controlled dc motor are used instead of a real wind turbine. A MATLAB/Simulink model is developed that obtains wind profiles and, by applying real wind turbine characteristics in dynamics and rotational speed of dc motor, calculates the command shaft torque of a real wind turbine. Based on the comparison between calculated torques with command one, the shaft torque of dc motor is regulated accordingly by controlling armature current demand of a single-phase half-controlled ac–dc converter. Simulation and experimental results confirm the effectiveness of proposed wind turbine simulator in emulating and therefore evaluating various turbines under a wide variety of wind conditions.  相似文献   

14.
H. Li  Z. Chen 《Renewable Energy》2009,34(4):1175-1184
This paper investigates the possible site matching of the direct-drive wind turbine concepts based on the electromagnetic design optimization of permanent magnet (PM) generator systems. Firstly, the analytical models of a three-phase radial-flux PM generator with a back-to-back power converter are presented. The optimum design models of direct-drive PM wind generation system are developed with an improved genetic algorithm, and a 500-kW direct-drive PM generator for the minimal generator active material cost is compared to demonstrate the effectiveness of the design optimization. Forty-five PM generator systems, the combinations of five rated rotor speeds in the range of 10–30 rpm and nine power ratings from 100 kW to 10 MW, are optimally designed, respectively. The optimum results are compared graphically in terms of the generator design indexes. Next, according to the design principle of the maximum wind energy capture, the rotor diameter and the rated wind speed of a direct-drive wind turbine with the optimum PM generator are determined. The annual energy output (AEO) is also presented using the Weibull density function. Finally, the maximum AEO per cost (AEOPC) of the optimized wind generator systems is evaluated at eight potential sites with annual mean wind speeds in the range of 3–10 m/s, respectively. These results have shown the suitable designs for the optimum site matching of the investigated PM generator systems.  相似文献   

15.
Shafiqur Rehman   《Renewable Energy》2005,30(3):447-463
This paper presents the energy output of wind farms in terms of unadjusted energy, gross energy, renewable energy delivered, specific yield and wind farm capacity factor. The analysis also includes the comparison of energy output from two methods: (i) the RETScreen model and (ii) the actual frequency and wind turbine power curve. The energy output analysis is done using three wind energy conversion systems of rated capacity 600, 1000, and 1500 kW. The study is performed for 30 MW installed capacity wind farms at five coastal locations in Saudi Arabia.Furthermore, the RETScreen software is also used to perform the economical feasibility study of the wind farms at these locations. The study concludes that of the five wind parks, Yanbo and Dhahran are the only two sites where wind park development is economically feasible. Finally, wind park development at Yanbo will result in a reduction in greenhouse gases of 31369, 23601, and 26087 tons each year, corresponding to 1500, 1000, and 600 kW machine wind parks, respectively. On the other hand, at Dhahran, installation of wind machines of 1500, 1000, and 600 kW sizes will reduce the GHGs by 26183, 19247, and 21533 tons per year.  相似文献   

16.
This study examines the effect of different wind turbine classes on the electricity production of wind farms in three areas of Australia, which present low, low to medium, and medium to high wind potential: Gingin, Armidale, and Gold Coast Seaway. Wind turbine classes determine the suitability of installing a wind turbine in a particulate site. Wind turbine data from six different manufacturers have been used. For each manufacturer, at lest two wind turbines with identical rated power (in the range of 1.5 MW–3 MW) and different wind turbine classes (IEC I, IEC II and/or IEC III) are compared. The results show the superiority of wind turbines that are designed for lower wind speeds (higher IEC class) in all three locations, in terms of energy production. This improvement is higher for the locations with lower and medium wind potential (Gingin and Armidale), and varies from 5% to 55%. Moreover, this study investigates the economical feasibility of a 30 MW wind farm, for all combinations of site locations and wind turbine models.  相似文献   

17.
In this paper, five typical regions of Algeria where wind is strong enough are selected. These regions usually intended for traditional agriculture are, centred around the towns of Guelma, El Oued, Tindouf, Touggourt and Tamanrasset. To make wind energy conversion available as an alternative energy source for the populations living in such countries, nine types of small and medium wind turbines constructed by American and European manufacturers are studied for their suitability. To account for the wind variations with height, four possible heights of the pylon holding the turbines are considered: 10, 20, 40 and 60 m. In each of the five locations and at each pylon height, wind energy converted by the turbines, is cumulated over the year and computed. Depending on the site and their size, most of these turbines are found to produce about 1000–10,000 MWh of electricity per year at 60 m of altitude and can easily satisfy the electricity need in irrigation and its household applications in rustic and arid regions. A quick glance of the results of the above computation shows that the choice of pylons of 20 m height yields a trade-off between the production of electrical energy and the requirements of economy. Owing to the sporadic wind variations, wind energy conversion systems can only be used as an auxiliary source. In particular, these systems can advantageously be coupled to stand-alone photovoltaic conversion systems in remote locations or connected to the electric mains in urban zones.  相似文献   

18.
Using output from a high‐resolution meteorological simulation, we evaluate the sensitivity of southern California wind energy generation to variations in key characteristics of current wind turbines. These characteristics include hub height, rotor diameter and rated power, and depend on turbine make and model. They shape the turbine's power curve and thus have large implications for the energy generation capacity of wind farms. For each characteristic, we find complex and substantial geographical variations in the sensitivity of energy generation. However, the sensitivity associated with each characteristic can be predicted by a single corresponding climate statistic, greatly simplifying understanding of the relationship between climate and turbine optimization for energy production. In the case of the sensitivity to rotor diameter, the change in energy output per unit change in rotor diameter at any location is directly proportional to the weighted average wind speed between the cut‐in speed and the rated speed. The sensitivity to rated power variations is likewise captured by the percent of the wind speed distribution between the turbines rated and cut‐out speeds. Finally, the sensitivity to hub height is proportional to lower atmospheric wind shear. Using a wind turbine component cost model, we also evaluate energy output increase per dollar investment in each turbine characteristic. We find that rotor diameter increases typically provide a much larger wind energy boost per dollar invested, although there are some zones where investment in the other two characteristics is competitive. Our study underscores the need for joint analysis of regional climate, turbine engineering and economic modeling to optimize wind energy production. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The aim of this research is to cover the energy needs of a house, which does not have any other energy source, by using wind power. A house in Izmir, where the wind velocity values of 1998 are known, and five different wind turbines were studied. The daily energy use of the house was determined and batteries were used to obtain a continuous energy. For each wind turbine the number of batteries needed for continuous energy was calculated and a financial analysis of each turbine and battery system was carried out. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents dynamic behavior and simulation results in a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage. The hybrid system consists of a 195 kW wind turbine, an 85 kW solar array; a 230 kW microturbine and a 2.14 kAh lead acid battery pack optimized based on economic analysis using genetic algorithm (GA). At first, a developed Lyapunov model reference adaptive feedback linearization method accompanied by an indirect space vector control is applied for extraction of maximum energy from a variable speed wind power generation system. Then, a fuzzy logic controller is designed for the mentioned purpose and its performance is compared with the proposed adaptive controller. For meeting more load demands, the solar array is integrated with the wind turbine. In addition, the microturbine and the battery storage are combined with the wind and solar power generation system as a backup to satisfy the load demand under all conditions.A supervisory controller is designed in order to manage energy between the maximum energy captured from the wind turbine/solar arrays, and consumed energies of the load, dump load, battery state of charge (SOC), and generated energy by the microturbine. Dynamic modeling and simulation are accomplished using MATLAB Simulink? 7.2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号