首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《能源学会志》2020,93(3):953-961
There is a high potential for plant oils as alternative fuel for low and medium speed diesel engines, making petroleum-derived fuels likely to be replaced in these types of engines. Vegetable oils have important advantages over both heavy fuel oil (HFO) and marine gas oil (MGO), the fuels currently used in diesel power plants by large two stroke low-speed diesel engines and by medium speed diesel engines, respectively. The emission of certain pollutants and greenhouse gases like SOx, soot and, mainly, CO2 can be reduced by using vegetable oils in these types of engines. This work discusses the potential of vegetable oils as fuel for power plant diesel engines and the problems that can be derived from their use. Current experiences with medium speed diesel engines together with the analysis carried out in this paper indicate that vegetable oils can substitute HFO and MGO, without almost any engine modification.  相似文献   

2.
Fuel crisis because of dramatic increase in vehicular population and environmental concerns have renewed interest of scientific community to look for alternative fuels of bio-origin such as vegetable oils. Vegetable oils can be produced from forests, vegetable oil crops, and oil bearing biomass materials. Non-edible vegetable oils such as linseed oil, mahua oil, rice bran oil, etc. are potentially effective diesel substitute. Vegetable oils have high-energy content. This study was carried out to investigate the performance and emission characteristics of linseed oil, mahua oil, rice bran oil and linseed oil methyl ester (LOME), in a stationary single cylinder, four-stroke diesel engine and compare it with mineral diesel. The linseed oil, mahua oil, rice bran oil and LOME were blended with diesel in different proportions. Baseline data for diesel fuel was collected. Engine tests were performed using all these blends of linseed, mahua, rice bran, and LOME. Straight vegetable oils posed operational and durability problems when subjected to long-term usage in CI engine. These problems are attributed to high viscosity, low volatility and polyunsaturated character of vegetable oils. However, these problems were not observed for LOME blends. Hence, process of transesterification is found to be an effective method of reducing vegetable oil viscosity and eliminating operational and durability problems. Economic analysis was also done in this study and it is found that use of vegetable oil and its derivative as diesel fuel substitutes has almost similar cost as that of mineral diesel.  相似文献   

3.
In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, methyl alcohol, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel oil substitute for internal combustion engines. Vegetable oils present a very promising alternative to diesel oil since they are renewable and have similar properties. Vegetable oils offer almost the same power output with slightly lower thermal efficiency when used in diesel engine [Srivastava A, Prasad R. Triglycerides-based diesel fuels. Renew Sustain Energy Rev 2000;4:111–33. [1]; Vellguth G. Performance of vegetable oils and their monoesters as fuels for diesel engines. SAE 831358, 1983. [2]; Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Int J Prog Energy Combust Sci 2005;31:466–87. [3]; Jajoo BN, Keoti RS. Evaluation of vegetable oils as supplementary fuels for diesel engines. In: Proceedings of the XV national conference on IC engines and combustion, Anna University Chennai, 1997. [4]; Altin R, Cetinkaya S, Yucesu HS. The potential of using vegetable oil fuels as fuel for diesel engines. Int J Energy Convers Manage 2000;42:529–38, 248. [5]; Gajendra Babu MK, Chandan Kumar Das LM. Experimental investigations on a Karanja oil methyl ester fuelled DI diesel engine. SAE 2006-01-0238, 2006. [6]; Agarwal D, Kumar Agarwal A. Performance and emission characteristics of a Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Int J Appl Therm Eng 2007;27:2314–23. [7]]. Research in this direction with edible oils have yielded encouraging results, but their use as fuel for diesel engine has limited applications due to higher domestic requirement [Scholl Kyle W, Sorenson Spencer C. Combustion Analysis of soyabean oil methyl ester in a direct injection diesel engine. SAE 930934, 1993. [8]; Nwafor OMI. Effect of advanced injection timing on the performance of rapeseed oil in diesel engines. Int J Renew Energy 2000;21:433–44. [9]; Nwafor OMI. The effect of elevated fuel inlet temperature on performance of diesel engine running on neat vegetable oil at constant speed conditions. Renew Energy 2003;28:171–81. [10]]. In view of this, Honge oil (Pongamia Pinnata Linn) being non-edible oil could be regarded as an alternative fuel for CI engine applications. The viscosity of Honge oil is reduced by transesterification process to obtain Honge oil methyl ester (HOME).Gasification is a process in which solid biomass is converted into a mixture of combustible gases, which complete their combustion in an IC engine. Hence, producer gas can act as a promising alternative fuel, especially for diesel engines by substituting considerable amount of diesel fuels. Downdraft moving bed gasifiers coupled with IC engine are a good choice for moderate quantities of available biomass, up to 500 kW of electric power. Hence, bioderived gas and vegetable liquids appear more attractive in view of their friendly environmental nature. Since vegetable oils produce higher smoke emissions, dual fuel operation could be adopted for improving their performance.  相似文献   

4.
Vegetable oils are always considered as the potential sources since the renewable and alternative fuels have been being paid attention by all countries in the world based on the strategies of the environmental pollution reduction. The aim of this experimental study is to evaluate the effects of as-used fuels on emission characteristics, deposit formation, and lubricating oil (LO) degradation of a 4 stroke-4 cylinder diesel engine running on preheated vegetable oil and diesel oil. All tests were conducted under 2000 rpm of engine speed, and 80hp of power within different periods of time depending on the test purposes. The ICP-MS analyzer was used to measure the LO quality through the parameters of kinematic viscosity, density, and metal concentrations on the basis of ASTM D5185-09 standard after every 25 hours of the test duration. Meanwhile, the emission characteristics were tested by an exhaust analyzer after every 50 hours, and deposit formation on piston crown and piston groove was evaluated by the assistance of Scanning electron microscopy (SEM) after 300 hours of the test. Besides, the thorough analysis related to the relationship between deposit formation, the degradation of the engine LO and emission characteristics were presented.  相似文献   

5.
Performance of rapeseed oil blends in a diesel engine   总被引:5,自引:0,他引:5  
The concept that 100% vegetable oil cannot be used safely in a direct-injection diesel engine for long periods of time has been stressed by many researchers. Short-term engine tests indicate good potential for vegetable oil fuels. Long-term endurance tests may show serious problems in injector coking, ring sticking, gum formation, and thickening of lubricating oil. These problems are related to the high viscosity and nonvolatility of vegetable oils, which cause inadequate fuel atomization and incomplete combustion. Fuel blending is one method of reducing viscosity. This paper presents the results of an engine test on three fuel blends. Test runs were also made on neat rapeseed oil and diesel fuel as bases for comparison. There were no significant problems with engine operation using these alternative fuels. The test results showed increases in brake thermal efficiency as the amount of rapeseed oil in the blends increases. Reduction of power-output was also noted with increased amount of rapeseed oil in the blends. Test results include data on performance and gaseous emissions. Crankcase oil analyses showed a reduction in viscosity. Friction power was noted to increase as the amount of diesel fuel in the blend increases.  相似文献   

6.
This paper reviews the production and characterization of biodiesel (BD or B) as well as the experimental work carried out by many researchers in this field. BD fuel is a renewable substitute fuel for petroleum diesel or petrodiesel (PD) fuel made from vegetable or animal fats. BD fuel can be used in any mixture with PD fuel as it has very similar characteristics but it has lower exhaust emissions. BD fuel has better properties than that of PD fuel such as renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. There are more than 350 oil bearing crops identified, among which only sunflower, safflower, soybean, cottonseed, rapeseed and peanut oils are considered as potential alternative fuels for diesel engines. The major problem associated with the use of pure vegetable oils as fuels, for Diesel engines are caused by high fuel viscosity in compression ignition. Dilution, micro-emulsification, pyrolysis and transesterification are the four techniques applied to solve the problems encountered with the high fuel viscosity. Dilution of oils with solvents and microemulsions of vegetable oils lowers the viscosity, some engine performance problems still exist. The viscosity values of vegetable oils vary between 27.2 and 53.6 mm2/s whereas those of vegetable oil methyl esters between 3.59 and 4.63 mm2/s. The viscosity values of vegetable oil methyl esters highly decreases after transesterification process. Compared to no. 2 diesel fuel, all of the vegetable oil methyl esters were slightly viscous. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. An increase in density from 860 to 885 kg/m3 for vegetable oil methyl esters or biodiesels increases the viscosity from 3.59 to 4.63 mm2/s and the increases are highly regular. The purpose of the transesterification process is to lower the viscosity of the oil. The transesterfication of triglycerides by methanol, ethanol, propanol and butanol, has proved to be the most promising process. Methanol is the commonly used alcohol in this process, due in part to its low cost. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The most important variables affecting the methyl ester yield during the transesterification reaction are molar ratio of alcohol to vegetable oil and reaction temperature. Biodiesel has become more attractive recently because of its environmental benefits. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification.  相似文献   

7.
Recent concerns over the environment, increasing fuel prices and scarcity of its supply have promoted the interest in development of the alternative sources for petroleum fuels. At present, biodiesel is commercially produced from the refined edible vegetable oils such as sunflower oil, palm oil and soybean oil, etc. by alkaline-catalyzed esterification process. This process is not suitable for production of biodiesel from many unrefined non-edible vegetable oils because of their high acid value. Hence, a two-step esterification method is developed to produce biodiesel from high FFA vegetable oils. The biodiesel production method consists of acid-catalyzed pretreatment followed by an alkaline-catalyzed transesterification. The important properties of methyl esters of rubber seed oil are compared with other esters and diesel. Pure rubber seed oil, diesel and biodiesel are used as fuels in the compression ignition engine and the performance and emission characteristics of the engine are analyzed. The lower blends of biodiesel increase the brake thermal efficiency and reduce the fuel consumption. The exhaust gas emissions are reduced with increase in biodiesel concentration. The experimental results proved that the use of biodiesel (produced from unrefined rubber seed oil) in compression ignition engines is a viable alternative to diesel.  相似文献   

8.
The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is fuel blending. In this study, a blend of 50% sesame oil and 50% diesel fuel was used as an alternative fuel in a direct injection diesel engine. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil–diesel fuel are close to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that blend of sesame oil and diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly fuel in terms of emission parameters.  相似文献   

9.
Vegetable oils are a promising alternative among the different diesel fuel alternatives. However, the high viscosity, poor volatility and cold flow characteristics of vegetable oils can cause some problems such as injector coking, severe engine deposits, filter gumming, piston ring sticking and thickening of lubrication oil from long-term use in diesel engines. These problems can be eliminated or minimized by transesterification of the vegetable oils to form monoesters. These monoesters are known as biodiesel. The important advantages of biodiesel are lower exhaust gas emissions and its biodegradability and renewability compared with petroleum-based diesel fuel. Although the transesterification improves the fuel properties of vegetable oil, the viscosity and volatility of biodiesel are still worse than that of petroleum diesel fuel. The energy of the biodiesel can be released more efficiently with the concept of low heat rejection (LHR) engine. The aim of this study is to apply LHR engine for improving engine performance when biodiesel is used as an alternative fuel. For this purpose, a turbocharged direct injection (DI) diesel engine was converted to a LHR engine and the effects of biodiesel (produced from sunflower oil) usage in the LHR engine on its performance characteristics have been investigated experimentally. The results showed that specific fuel consumption and the brake thermal efficiency were improved and exhaust gas temperature before the turbine inlet was increased for both fuels in the LHR engine.  相似文献   

10.
Vegetable oils have been identified as the promising alternative source to replace fossil based fuel in the compression ignition (CI) engine. It is renewable and possesses characteristics that is similar to that of the diesel. Biodiesel, transesterifiedform of vegetable oil (VO), is now being commercially used in CI engines. However, biodiesel production from VO involves use of alcohols and chemicals which results the need of skilled labor and investment for its production. In view of this, many studies are also being carried out on the direct use of VO in the engine. The direct use of VO oil in engine is as good as that of the diesel. The superior quality of diesel however makes it better performance in engine as compared to the vegetable oil. Preheating and blending of VO are found to be the most common solution to overcome its inferior properties. The use of preheated and blended VO is found to improve the engine overall performance. This paper is focused exclusively on the one-to-one basis of study pertaining to the effect of neat, preheated and blended vegetable oils on diesel engine performance and emission through supplementation of illustrative figures from the various experimental studies.  相似文献   

11.
The high viscosity of vegetable oils leads to problem in pumping and spray characteristics. The inefficient mixing of vegetable oils with air contributes to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main resources for biodiesel production can be non-edible oils obtained from plant species such as Pongamia pinnata (Honge oil), Jatropha curcas (Ratanjyot), Hevea brasiliensis (Rubber) and Calophyllum inophyllum (Nagchampa). Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in CI engines with very little or no engine modifications. This is because it has properties similar to mineral diesel. This paper presents the results of investigations carried out on a single-cylinder, four-stroke, direct-injection, CI engine operated with methyl esters of Honge oil, Jatropha oil and sesame oil. Comparative measures of brake thermal efficiency, smoke opacity, HC, CO, NOX, ignition delay, combustion duration and heat release rates have been presented and discussed. Engine performance in terms of higher brake thermal efficiency and lower emissions (HC, CO, NOX) with sesame oil methyl ester operation was observed compared to methyl esters of Honge and Jatropha oil operation.  相似文献   

12.

Biodiesel from transesterification of vegetable oils is an excellent alternative fuel. There is, however, a need to develop a direct process for conversion of vegetable oils into gasoline-competitive biodiesel and other petroleum products. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The purpose of the transesterification process is to lower the viscosity of vegetable oil. Compared to No. 2 diesel fuel, all of the vegetable oils are much more viscous, whereas methyl esters of vegetable oils are slightly more viscous. The methyl esters are more volatile than those of the vegetable oils. Conversion of vegetable oils to useful fuels involves the pyrolysis and catalytic cracking of the oils into lower molecular products. Pyrolysis produces more biogasoline than biodiesel fuel. Soap pyrolysis products of vegetable oils can be used as alternative diesel engine fuel. The soaps obtained from the vegetable oils can be pyrolyzed into hydrocarbon-rich products. Zinc chloride catalyst contributed greatly to high amounts of hydrocarbons in the liquid product. The yield of ZnCl 2 catalytic conversion of the soybean oil reached the maximum 79.9% at 660 K.  相似文献   

13.
In this investigation, castor methyl ester (CME) was prepared by transesterification using potassium hydroxide (KOH) as catalyst and was used in four stroke, single cylinder variable compression ratio type diesel engine. Tests were carried out at a rated speed of 1500 rpm at different loads. Straight vegetable oils pose operational and durability problems when subjected to long term usages in diesel engines. These problems are attributed to high viscosity, low volatility and polyunsaturated character of vegetable oils. The process of transesterification is found to be an effective method of reducing vegetable oil viscosity and eliminating operational and durability problems. The important properties of methyl ester of castor seed oil are compared with diesel fuel. The engine performance was analysed with different blends of biodiesel and was compared with mineral diesel. It was concluded that the lower blends of biodiesel increased the break thermal efficiency and reduced the fuel consumption. The exhaust gas temperature increased with increasing biodiesel concentration. The results proved that the use of biodiesel (produced from castor seed oil) in compression ignition engine is a viable alternative to diesel.  相似文献   

14.
Vegetable oils pose some problems when subjected to prolonged usage in compression ignition engines because of their high viscosity and low volatility. The common problems are poor atomization, carbon deposits, ring sticking, fuel pump failure, etc. Converting the high viscosity vegetable oil into its blends or esters can minimize these problems. The various blends of rubber seed oil and diesel were prepared and its important properties such as viscosity, calorific value, flash point, fire point, etc. were evaluated and compared with that of diesel. The blends were then subjected to engine performance and emission tests and compared with that for diesel. It was found that 50–80% of rubber seed oil blends gave the best performance. Long run tests were conducted using optimized blend and diesel. It was found that blend fueled engine has higher carbon deposits inside combustion chamber than diesel-fueled engine. Utilization of blends requires frequent cleaning of fuel filter, pump and the combustion chamber. Hence, it is recommended that rubber seed oil–diesel blend fuel is more suitable for rural power generation.  相似文献   

15.
分析了柴油机油在使用过程中的污染变质问题,说明运用中柴油机油化验分析的意义,并提出实际应用中存在的问题及建议。  相似文献   

16.
随着润滑油工业的发展,含有金属离子的碱性添加剂已经成为润滑油工业不可缺少的添加成分.碱性添加剂大大改善了润滑油的性能,使其使用寿命大大延长,并起到了保护发动机的作用,但过量的碱性添加剂对发动机后处理会带来负面影响.本文就碱性添加剂对机油使用性能的影响,通过试验的方式加以验证,并对实际的机油使用提出建议.  相似文献   

17.
Many studies have been published on vegetable oil use in diesel engines. The different authors unanimously acknowledge the potential and merits of this renewable fuel. Typically, Straight Vegetable Oils (SVOs) produced locally on a small scale, have proven to be easy to produce with very little environmental impact. However, as their physico-chemical characteristics differ from those of diesel oil, their use in diesel engines can lead to a certain number of technical problems over time. In bibliography, there is substantial disagreement between authors regarding the advanced phenomena linked to this problems and the recommended solutions. Some of these publications treat options individually without any real comparison between them. Another observation is that the literature rarely tackles problems linked to vegetable oil quality. This paper sets out to review the state of the art for SVO use as fuel in diesel engines, based on a bibliographic study (literature review). The first section of the document examines the influence of the type and quality of vegetable oils for fuel use in diesel engines. The second section discusses the advantages and disadvantages of two options recommended for SVO use in diesel engines: dual fuelling and blending with diesel fuel.  相似文献   

18.
This article is a literature review on biodiesel production, combustion, performance and emissions. This study is based on the reports of about 130 scientists who published their results between 1980 and 2008. As the fossil fuels are depleting day by day, there is a need to find out an alternative fuel to fulfill the energy demand of the world. Biodiesel is one of the best available sources to fulfill the energy demand of the world. More than 350 oil-bearing crops identified, among which some only considered as potential alternative fuels for diesel engines. The scientists and researchers conducted tests by using different oils and their blends with diesel.A vast majority of the scientists reported that short-term engine tests using vegetable oils as fuels were very promising but the long-term test results showed higher carbon built up and lubricating oil contamination resulting in engine failure. They concluded that vegetable oils, either chemically altered or blended with diesel to prevent the engine failure. It was reported that the combustion characteristics of biodiesel are similar as diesel and blends were found shorter ignition delay, higher ignition temperature, higher ignition pressure and peak heat release. The engine power output was found to be equivalent to that of diesel fuel. In addition, it observed that the base catalysts are more effective than acid catalysts and enzymes.  相似文献   

19.
用试验数据说明汽油机润滑油的性能和质量与排放、节能的关系,分析国内外汽油机润滑油的现状和发展趋势,提出了今后我国汽油机润滑油的发展方向。  相似文献   

20.
《Biomass & bioenergy》2005,28(1):77-86
Vegetable oils and their methyl/ethyl esters are alternative renewable fuels for compression ignition engines. Different kinds of vegetable oils and their methyl/ethyl esters have been tested in diesel engines. However, tobacco seed oil and tobacco seed oil methyl ester have not been tested in diesel engines, yet. Tobacco seed oil is a non-edible vegetable oil and a by-product of tobacco leaves production. To the author's best knowledge, this is the first study on tobacco seed oil methyl ester as a fuel in diesel engines.In this study, potential tobacco seed production throughout the world, the oil extraction process from tobacco seed and the transesterification process for biodiesel production were examined. The produced tobacco seed oil methyl ester was characterized by exposing its major properties. The effects of tobacco seed oil methyl ester addition to diesel No. 2 on the performance and emissions of a four cycle, four cylinder turbocharged indirect injection (IDI) diesel engine were examined at both full and partial loads. Experimental results showed that tobacco seed oil methyl ester can be partially substituted for the diesel fuel at most operating conditions in terms of performance parameters and emissions without any engine modification and preheating of the blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号