首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different heating systems have been used in pultrusion, where the most widely used heaters are planar resistances. The primary objective of this study was to develop an improved heating system and compare its performance with that of a system with planar resistances. In this study, thermography was used to better understand the temperature profile along the die. Finite element analysis was performed to determine the amount of energy consumed by the heating systems. Improvements were made to the die to test the new heating system, and it was found that the new system reduced the setup time and energy consumption by approximately 57%.  相似文献   

2.
In this paper thermo-chemical simulation of the pultrusion process of a composite rod is first used as a validation case to ensure that the utilized numerical scheme is stable and converges to results given in literature. Following this validation case, a cylindrical die block with heaters is added to the pultrusion domain of a composite part and thermal contact resistance (TCR) regions at the die-part interface are defined. Two optimization case studies are performed on this new configuration. In the first one, optimal die radius and TCR values are found by using a hybrid genetic algorithm based on a sequential combination of a genetic algorithm (GA) and a local search technique to fit the centerline temperature of the composite with the one calculated in the validation case. In the second optimization study, the productivity of the process is improved by using a mixed integer genetic algorithm (MIGA) such that the total number of heaters is minimized while satisfying the constraints for the maximum composite temperature, the mean of the cure degree at the die exit and the pulling speed.  相似文献   

3.
In this paper the out of die ultraviolet (UV) cured pultrusion for manufacturing impact automotive energy absorbing parts has been analysed. Aspects such as the UV source, pultrusion process variables and final mechanical and physical properties of the pultruted parts have been studied. The measured maximum pulling force in the die was approximately 80 N. The parts cured with high intensity UV LED sources present low void concentration and almost no expansion at the exit of the die. The parts cured with the traditional UV arc lamp have an expansion of 20% of the expected thickness and hence, high void concentration. The less expansion at the exit of the die is translated into an improvement of 26% in the interlaminar properties and in 8% in the energy absorbing capability of the UV LED cured parts.  相似文献   

4.
This paper provides a methodology for the modeling of heat transfer and polymer flow during direct thermoplastic injection pultrusion process. Pultrusion was initially developed with thermosets which have low viscosity. But the impregnation becomes a critical point with thermoplastics which exhibit higher viscosity. There are very few reported works on direct thermoplastic impregnation with injection within the die. In addition, the rare studies have not adequately addressed the issue of unsaturated flow in woven fiber reinforcements. The solution proposed here, models the polymer flow through dual-scale porous media. A heat transfer model is coupled to a flow model enriched with a sink term. Specific changes of variables are made so as to model the steady state solution of unsaturation along a continuous process. The sink term, added to the continuity equation, represents the absorption rate of polymer by the bundles. Data were measured on a pultrusion line and micrographs confirmed the modeling strategy with an unsaturated flow approach. The flow modeling coupled to heat transfer of the thermoplastic pultrusion process aims at determining the saturation evolution through the die so as to manufacture pultruded profiles with the lowest residual porosity.  相似文献   

5.
Step Pultrusion     
The pultrusion process is an efficient technology for the production of composite material profiles. Thanks to this positive feature, several studies have been carried out, either to expand the range of products made using the pultrusion technology, or improve its already high production rate. This study presents a process derived from the traditional pultrusion technology named ??Step Pultrusion Process Technology?? (SPPT). Using the step pultrusion process, the final section of the composite profiles is obtainable by means of a progressive cross section increasing through several resin cure stations. This progressive increasing of the composite cross section means that a higher degree of cure level can be attained at the die exit point of the last die. Mechanical test results of the manufactured pultruded samples have been used to compare both the traditional and the step pultrusion processes. Finally, there is a discussion on ways to improve the new step pultrusion process even further.  相似文献   

6.
Life cycle assessment is a technique to assess environmental aspects associated with a product or process by identifying energy, materials, and emissions over its life cycle. The energy analysis includes four stages of a life cycle: material production phase, manufacturing phase, use phase, and end-of-life phase. In this study, the life cycle energy of fiber-reinforced composites manufactured by using the pultrusion process was analyzed. For more widespread use of composites, it is critical to estimate how much energy is consumed during the lifetime of the composites compared to other materials. In particular, we evaluated a potential for composite materials to save energy in automotive applications. A hybrid model, which combines process analysis with economic input–output analysis, was used to capture both direct and indirect energy consumption of the pultrusion process in the material production and manufacturing stages.  相似文献   

7.
Nowadays, the simple pull-force models of pultrusion process are not suitable for large sized rods because they are not considered a chemical shrinkage and thermal expansion acting in cured material inside the die. But the pulling force of the resin-impregnated fibers as they travels through the heated die is essential factor in the pultrusion process. In order to minimize the number of trial-and-error experiments a new mathematical approach to determine the frictional force is presented. The governing equations of the model are stated in general terms and various simplifications are implemented in order to obtain solutions without extensive numerical efforts. The influence of different pultrusion parameters on the frictional force value is investigated. The results obtained by the model can establish a foundation by which process control parameters are selected to achieve an appropriate pull-force and can be used for optimization pultrusion process.  相似文献   

8.
Optimization studies are performed on the pultrusion of a thermosetting composite. The three-dimensional finite element/nodal control volume procedure developed for simulation and optimization of the process is employed for this purpose. The aim of optimization is to achieve the desired degree of cure with minimum local variations across the pultrudate cross-section. The die-heating environment is optimized for a few cases with different initial temperatures for a glass/epoxy wet preform and for the cooler installed within the pultrusion die near its entrance. The role of these temperature parameters in moderating the optimization constraints is examined. Simultaneous optimization of die-heater temperatures and pull-speed is also considered. It is observed that the temperature overshoot within the composite pultrudate can be reduced and better optimization results can be achieved by a proper choice of a pre-die temperature for the composite and the die-cooler temperature.  相似文献   

9.
Pultrusion being the viable and economical process for producing constant cross-section composite products, many variants of it are being tried out. This paper embarks on the pultrusion with multi-materials; typically of polymer foam/glass fibre reinforced polymer (GFRP) sandwich panels. Unlike conventional composites pultrusion, this process with more than two material phases, one of them dry, poses a challenge in simulating the thermal co-curing within the die. In this paper, the formulation and development of three-dimensional, finite element/nodal control volume (FE/NCV) approach for such multi-material pultrusion is presented. The numerical features for handling the dry-wet material interfaces, material shrinkage, variations in pull speed and die heating, and foam-to-skin thickness ratio are discussed. Implementation of the FE/NCV procedure and its application in analyzing pultrusion of polymer foam/GFRP sandwich panels with multi-heater environment are presented.  相似文献   

10.
《Composites Part A》1999,30(9):1123-1132
There are a variety of ways to process composite materials. One such way is pultrusion which is a continuous process for manufacturing composite materials of constant cross-sections. The pultrusion process involves a number of variables and processing parameters which can affect the quality of a pultruded product. One variable of particular interest is the fluid resin pressure rise in the tapered inlet region of the die. The liquid resin pressure rise in the die inlet can have a significant impact on the quality of a pultruded product. An appreciable pressure rise can suppress void formations and enhance fiber “wet out”. Darcy’s law for flow in a porous media is used to mathematically model the fiber/resin system of the pultrusion process, while employing the finite volume solution method to predict the pressure and velocity fields as a function of various process control parameters. The results obtained by the numerical model can establish a foundation by which process control parameters are selected to achieve an appreciable pressure rise which will enhance the quality of the pultruded composite. The results can also be applied to die inlet design.  相似文献   

11.
《Composites Part A》2007,38(5):1431-1438
The present work reports the pultrusion of a flax reinforced polypropylene commingled yarn containing discontinuous flax and polypropylene fibers. This was the first attempt to pultrude this material. Rectangular cross-sectional profiles have been successfully produced using a self-designed pultrusion line. In a series of experiments carried out with yarns of two different flax fiber contents, the pultrusion parameters were varied. In particular, the preheating and die temperatures and also the pulling speed, which are the most relevant parameters regarding the potential future pultrusion of natural fiber composite profiles at industrial scale. A complete characterization of each profile was conducted in order to examine the influence of processing parameters on the profile quality. The mechanical properties were evaluated by performing three point bending as well as Charpy impact tests.  相似文献   

12.
《Composites Part A》2001,32(5):663-681
Pultrusion is one of the most efficient methods for making fiber reinforced polymer composite parts. However, more work needs to be done to develop scientific means for the pultrusion tooling design and process control. This paper describes numerical simulation on the pultrusion of fiberglass–vinyl ester composite I beams using a numerical procedure based on general-purpose FE packages. The theory and numerical implementation of the procedure is briefly introduced. The procedure is verified by good agreement between the predicted temperature profiles and the experimental ones. The effect of various process parameters and/or heating configurations on the temperature and curing profiles in the composite I beams are investigated numerically. The results are used to determine preferred process conditions and/or heating configurations for the pultrusion of the composite I beams.  相似文献   

13.
Braid-trusion is a manufacturing process for composite materials in which a braiding machine is coupled with a pultrusion die to continuously produce beams with constant cross-section and off-axis fiber orientation. This study presents a geometrical model of the tri-axial braid which allows the design of braided preforms that achieve correct filling of the pultrusion die at the same time as it limits fiber friction on die walls. The typic design parameters are listed and used for the manufacturing of a braid-truded thermoplastic composite beam where fibers are aligned at ±69° as well as 0° with respect to the beam axis. Tensile mechanical characterization and cross-section observations are also presented.  相似文献   

14.
Resin injection pultrusion is an efficient and highly automated continuous process for high-quality, low-cost, high-volume manufacturing of composites. The main objective of this study is to explore the “attached-die configuration” and “detached-die configuration” for improving the resin injection pultrusion process. In this work the impact of pull speed on complete wet out of the reinforced fiber is investigated for attached-die and detached-die resin injection pultrusion with various chamber length considerations. A 3-D finite volume technique was applied to simulate the liquid resin flow through the fiber reinforcement in the injection pultrusion process. This work explores the resin injection pressure needed to achieve complete wet out and the corresponding maximum pressure inside the resin injection chamber so as to improve injection chamber design to keep the pressure within the injection chamber within reasonable constraints for different pull speeds.  相似文献   

15.
In this study, the effect of the process parameters of the clinching process on the joinability of advanced high-strength steel was investigated using finite element analysis (FEA). The effect of die geometrical parameters on the achieved joint lock size and maximum forming force has been determined. It has been determined that the die groove width is the most important parameter affecting the material flow effect and energy consumption of the joining process. From the result, the die radius, die depth, and die groove shape were mainly affected by the joinability of advanced high-strength steel H320LA.  相似文献   

16.
Composite materials, as the name indicates, are composed of different materials that yield superior performance as compared to individual components. Pultrusion is one of the most cost-effective manufacturing techniques for producing fiber-reinforced composites with constant cross-sectional profiles. This obviously makes it more attractive for both researchers and practitioners to investigate the optimum process parameters. Validated computer simulations cost less as compared to physical experiments, therefore this makes them an efficient tool for numerical optimization. However, the complexity of the numerical models can still be “expensive” and forces us to use them sparingly. These relatively more complex models can be replaced with “surrogates,” which are less complex and are therefore faster to evaluate representative models. In this article, a previously validated thermochemical simulation of the pultrusion process has shortly been presented. Following this, a new constrained optimization methodology based on a well-known surrogate method, i.e., Kriging, is introduced. Next, a validation case is presented to clarify the working principles of the implementation, which also supports the upcoming main optimization test cases. This design problem involves the design of the heating die with one, two, and three heaters together with the pulling speed. The results show that the proposed methodology is very efficient in finding the optimal process and design parameters.  相似文献   

17.
为研究玻璃钢(GFRP)拉挤工艺参数对复合材料性能的影响,优化最佳拉挤工艺参数,建立了拉挤工艺过程数学模型,结合基于有限元/有限差分的间接解耦法进行求解,模拟得到了拉挤过程中GFRP内部的非稳态温度场和固化度变化情况.分别采用布拉格光栅光纤温度传感器和索氏萃取法检测拉挤GFRP内部的温度与固化度,实测温度和固化度均与模拟温度和固化度吻合,验证了数值模拟程序的正确性.以数值模拟结果为样本,建立反向传播神经网络,得到拉挤工艺参数(固化温度、拉挤速度)与GFRP固化度之间的非线性相关关系,再结合遗传算法解决拉挤过程中固化炉温度和拉挤速度双目标优化问题.优化得到的拉挤工艺参数可在保证复合材料固化度达标的情况下,提高拉挤速度降低固化炉温度,优化效果显著.神经网络遗传算法优化方法能有效解决此类具有复杂非线性关系的多目标优化问题.  相似文献   

18.
19.
以玻璃纤维/聚丙烯复合纱为原料,采用拉挤成型方式制备连续纤维增强热塑性复合材料,通过组建的拉挤试验线获得了拉挤型材试样,探究了复合纱穿纱方式、模具型腔结构、模具温度和拉挤速率对制品性能的影响,并观察其截面形态。结果表明:采用收敛式型腔结构、提高模具温度、降低拉挤速率,可有效改善玻纤/树脂间结合能力,提高纤维在制品中的分布均匀性,降低制品的孔隙率,提高其力学性能。   相似文献   

20.
In the present paper, the heat transfer and curing process during the pultrusion of a fiberglass-vinyl ester I beam is simulated using a finite element/control volume procedure developed at the Cooperative Research Centre for Advanced Composite Structures (CRC-ACS). The governing equations for the pultrusion process are introduced. The numerical algorithm adapted to solve the equations is briefly described. Numerical simulations are conducted to obtain the temperature and curing profiles for different temperature settings and pull speeds. The predicted temperature profiles are compared with those obtained experimentally. Good agreement is observed. The result of the present work enhances our confidence in applying the numerical procedure as a routine design and analysis tool for the pultrusion tooling and process development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号