首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fiber Reinforced Polymer (FRP) composite panels are particularly attractive as bridge decks due to their high strength, low density, and durability, which are of importance in the bridge industry. Although the short term performance of FRP decks is satisfactory, the long-term performance under weather conditions still awaits future testimony and remains a major concern in their use as primary load bearing members. Since the load capacity and structural stiffness of FRP decks deteriorate over time at different rates, it is necessary to develop robust mechanics models to simulate the long-term performance of FRP deck structures subject to the combined effects of mechanical and environmental loading. To this end, a comprehensive mechanics framework has been developed, taking into account the critical deterioration rates of the FRP constituents. Such deterioration relationships were obtained by calibrating the accelerated laboratory durability test data with the in-service field measurements. Simulation results agree well with the 4-year performance data of a FRP-deck road bridge. Long-term validation data is, however, still needed.  相似文献   

2.
Glass-fibre reinforced polymer (GFRP) sandwich structures (1.6 m × 1.3 m) were subject to 30 kg charges of C4 explosive at stand-off distances 8–14 m. Experiments provide detailed data for sandwich panel response, which are often used in civil and military structures, where air-blast loading represents a serious threat. High-speed photography, with digital image correlation (DIC), was employed to monitor the deformation of these structures during the blasts. Failure mechanisms were revealed in the DIC data, confirmed in post-test sectioning. The experimental data provides for the development of analytical and computational models. Moreover, it underlines the importance of support boundary conditions with regards to blast mitigation. These findings were analysed further in finite element simulations, where boundary stiffness was, as expected, shown to strongly influence the panel deformation. In-depth parametric studies are ongoing to establish the hierarchy of the various factors that influence the blast response of sandwich composite structures.  相似文献   

3.
This paper deals with the structural design of single lap joints (SLJs) with delaminated adherends using fracture mechanics principles. The interlaminar stresses and Strain Energy Release Rate (SERR) are considered as damage characterizing parameters used for designing the SLJ when delamination damages are pre-embedded in both the adherends at similar positions. Three dimensional geometrically non-linear finite element analyses (FEAs) of SLJ with delaminated adherends have been performed to determine the interlaminar and SERR values along the delamination fronts by simulating the simultaneous interaction delamination damages when pre-embedded at similar positions in both the adherends. SERR values are evaluated using Modified Crack Closure Technique (MCCI) which is based on energy principle. The delaminations are assumed to be of linear front, and have been considered to be embedded in both the laminated FRP composite adherends beneath the surface ply of the adhesively bonded SLJ. The delamination damages are presumed either to pre-exist or get evolved at the interlaminar locations. Such delaminations have been modelled using the sublaminate technique. The critical issues of modelling pre-embedded delamination damages are discussed in detail. The numerical results presented in this paper are based on the validated FE model compared with the available literature. Based on the present analyses, the structural design recommendations have been made for the SLJ when pre-embedded delamination damages are present in both the adherends. It is observed from the stress based design that the delamination damage when present in the bottom adherend is more detrimental for failure of SLJ compared to that for the case when it is present in the top adherend. Also, SERR based design reveals that the opening mode predominantly governs the propagation of delamination damage for all positions of the pre-embedded delaminations in both the adherends of the SLJ.  相似文献   

4.
The main objective of the research reported here was to develop a new hybrid glulam panel that improves the performance of timber structures and optimises the use of wood in such structures. The hybrid panel is produced by combining glulam with short ultra-high-performance fibre-reinforced concrete (UHPC-SFR) planks with or without internal steel or fibre-reinforced polymer (FRP) reinforcement bars. This study presents an experimental programme of tests performed on seven large-scale hybrid panels under four-point bending. The results show that by combining wood and UHPC-SFR, a hybrid panel is obtained with greater bending stiffness and an increased ultimate load capacity. To detail the failure modes and better understand the mechanical behaviour of this hybrid panel, FEM modelling was performed. The results show that it is possible to accurately model bending behaviour and determine the distribution of stress in composite sections.  相似文献   

5.
The 1D Carrera Unified Formulation (CUF) is here used to perform static analyses of functionally graded (FG) structures. The hierarchical feature of CUF allows one to automatically generate an infinite number of displacement theories that may include any kind of functions of the cross-section coordinates (x, z), among which those used to describe the variation of the mechanical properties of FG materials. The governing equations are derived by means of the Principle of Virtual Displacements in a weak form and solved by means of the Finite Element method (FEM). The equations are written in terms of “fundamental nuclei”, whose forms do not depend on the used expansions. Trigonometric, polynomial, exponential and miscellaneous expansions are here used and evaluated for various structural problems. Resulting theories are assessed by considering several aspect-ratios, gradation laws, loading and boundary conditions. The results are compared with 1-, 2- and 3-D solutions both in terms of displacements and stress distributions. The comparisons confirm that the 1D CUF elements are valuable tools for the study of FG structures.  相似文献   

6.
This paper presents experimental fatigue results for GFRP face sheet/balsa core sandwich beams with face sheet wrinkle defects, subjected to fully reversed in-plane fatigue loading. An estimate of the fatigue design limit is presented, based on static test results, finite element analyses and application of the Northwestern University failure criteria. The presence of a wrinkle defect reduced the fatigue life by approximately 66%, compared to that of an unnotched reference laminate. Furthermore, the results from the fatigue tests revealed that the design limit was initially overestimated, as the specimens loaded close to the predicted design limit typically failed before reaching the target life, or reached test run-out with visible face sheet damage indicating imminent final failure in the worst case. It was found that specimens would reach target life with no visible or otherwise detectable damage by lowering the fatigue load amplitude below 80% of the predicted design limit. By extrapolating the test results it appears that the undamaged specimens would reach a fatigue life of 107–108 load cycles and would thus be safe for design of wind turbine blades.  相似文献   

7.
This study describes the dynamic stability of composite cantilever beams subjected to periodic axial loading with delaminations at pre-set locations. A computer code based on the finite element method is developed to calculate the natural frequencies, critical buckling loads and dynamic instability regions of the woven and laminated composite beams with different stacking sequences ([0]4, [0/90]s and [90]4), corresponding to this peculiar delamination case. The results of the developed code for the natural frequencies are compared with the natural frequencies obtained experimentally and numerically with commercial FEA (ANSYS). The critical buckling loads are also compared with the ones obtained from ANSYS simulations.  相似文献   

8.
The dynamic response analysis of a delaminated composite beam with a general lay-up traversed under an arbitrary moving/non-moving force is presented. By employing the energy method and introducing a new finite element, the global mass and stiffness matrices for a Laminated Composite Beam (LCB) of Timoshenko type are derived in which the material couplings (bending–tension, bending–twist, and tension–twist couplings) with the Poisson’s effect are considered. In deriving the governing equation the non-penetration condition is imposed by employing the method of Lagrange multipliers. Out of a self-developed finite element program, the natural frequencies and time response of such LCB are obtained. To check on the accuracy of the derived equation and hence, developed program, the obtained results are compared with the results from other available references out of which very good agreements are observed. Finally, by changing the laminate’s lay-ups, beam geometrical parameters and type of external force, the LCB’s natural frequencies and time responses are obtained as a primary base for the structural design.  相似文献   

9.
This paper addresses low-velocity impact behaviour of functionally graded clamped circular plates. An experimental work was carried out to investigate the impact behaviour of FG circular plates which is composed of ceramic (SiC) and metal (Al) phases varying through the plate thickness by using a drop-weight impact test system. The influence of the compositional gradient exponent and impactor velocity on the contact forces and absorbed energies was concentrated on the tests. The explicit finite element method, in which a volume fraction based elastic–plastic model (the TTO model) was implemented for the functionally graded materials, was used to simulate their drop-weight impact tests. Effective material properties at any point inside FGM plates were determined using Mori–Tanaka scheme. The experimental and numerical results indicated that the compositional gradient exponent and impactor velocity more effective on the elasto-plastic response of the FG circular plates to a low-velocity impact loading. The comparison at the theoretical and experimental results showed that the use of the TTO model in modelling the elasto-plastic behaviour of FG circular plates results in increasing deviations between the numerical and experimental contact forces for ceramic-rich compositions whereas it becomes more successful for metal-rich compositions.  相似文献   

10.
This paper presents details and brief results of an experimental investigation on the response of metallic sandwich panels with stepwise graded aluminum honeycomb cores under blast loading. Based on the experiments, corresponding finite element simulations have been undertaken using the LS-DYNA software. It is observed that the core compression stage was coupled with the fluid–structure interaction stage, and the compression of the core layer decreased from the central to the peripheral zone. The blast resistance capability of sandwich panels was moderately sensitive to the core relative density and graded distribution. For the graded panels with relative density descending core arrangement, the core plastic energy dissipation and the transmitted force attenuation were larger than that of the ungraded ones under the same loading condition. The graded sandwich panels, especially for relative density descending core arrangement, would display a better blast resistance than the ungraded ones at a specific loading region.  相似文献   

11.
The subject of this paper is numerical prediction of bird strike induced damage in real aeronautical structures using highly detailed finite element models and modern numerical approaches. Due to the complexity of today’s aeronautical structures, numerical damage prediction methods have to be able to take into account various failure and degradation models of different materials. A continuum damage mechanics approach has been employed to simulate failure initiation and damage evolution in unidirectional composite laminates. Hashin’s failure initiation criteria have been employed in order to be able to distinct between four ply failure modes. The problem of soft body impacts has been tackled by applying the Coupled Eulerian Lagrangian technique, thereby avoiding numerical difficulties associated with extensive mesh distortion. This improvement in impactor deformation modelling resulted in a more realistic behaviour of bird material during impact. Numerical geometrical and material nonlinear transient dynamic analyses have been performed using Abaqus/Explicit. The main focus of the work presented in this paper is the application of the damage prediction procedure in damage assessment of bird impact on a typical large airliner inboard flap structure. Due to the high cost of gas-gun testing of aircraft components, experimental testing on the real flap structure could not have been performed. In order to evaluate the accuracy of the presented method, the bird and composite damage model have been validated against experimental data available in the literature.  相似文献   

12.
As a contribution to the prediction of the evolutionary behavior of biocomposites in service conditions, this study focused on the simulation of the hydrothermal aging of short natural fiber reinforced composites made by extrusion/injection molding. We endeavored to model the reversible modifications of the behavior of PLA and PLA/flax composites when immersed in water at different temperatures (20, 35 and 50 °C). A numerical model accounting for the heterogeneous mechanisms involved during aging such as water diffusion and the resulting swelling and plasticizing of polymers was implemented. Simulated data proved to be in perfect accordance with experimental results as long as no irreversible mechanism was occurring. The deviations of the simulated data from experimental results were limited at 35 °C but significant at 50 °C. Finally, the influence of moisture on the local elastic modulus of flax fibers was inferred thanks to the Halpin-Kardos homogenization model.  相似文献   

13.
The paper illustrates the application of a finite element tool for simulating the structural and damage response of foam-based sandwich composites subjected to low-velocity impact. Onset and growth of typical damage modes occurring in the composite skins, such as fibre fracture, matrix cracking and delaminations, were simulated by the use of three-dimensional damage models (for intralaminar damage) and interfacial cohesive laws (for interlaminar damage). The nonlinear behaviour of the foam core was simulated by a crushable foam plasticity model. The FE results were compared with experimental data acquired by impact testing on sandwich panels consisting of carbon/epoxy facesheets bonded to a PVC foam. Good agreement was obtained between predictions and experiments in terms of force histories, force–displacement curves and dissipated energy. The proposed model was also capable of simulating correctly nature and size of impact damage, and of capturing the key features of individual delaminations at different depth locations.  相似文献   

14.
The objective of this study was to evaluate three potential core alternatives for glass fiber reinforced polymer (GFRP) foam-core sandwich panels. The proposed system could reduce the initial production costs and the manufacturing difficulties while improving the system performance. Three different polyurethane foam configurations were considered for the inner core, and the most suitable system was recommended for further prototyping. These configurations consisted of high-density polyurethane foam (Type 1), a bidirectional gridwork of thin, interconnecting, GFRP webs that is in-filled with low-density polyurethane foam (Type 2), and trapezoidal-shaped, low-density polyurethane foam utilizing GFRP web layers (Type 3). The facings of the three cores consisted of three plies of bidirectional E-glass woven fabric within a compatible polyurethane resin. Several types of small-scale experimental investigations were conducted. The results from this study indicated that the Types 1 and 2 cores were very weak and flexible making their implementation in bridge deck panels less practical. The Type 3 core possessed a higher strength and stiffness than the other two types. Therefore, this type is recommended for the proposed sandwich system to serve as a candidate for further development. Additionally, a finite element model (FEM) was developed using software package ABAQUS for the Type 3 system to further investigate its structural behavior. This model was successfully compared to experimental data indicating its suitability for parametric analysis of panels and their design.  相似文献   

15.
This study compares the performances of three types of repair jackets on mainshock (MS) earthquake-damaged RC bridge columns subjected to aftershock (AS) attacks. These repair jackets include fiber reinforced polymers (FRP), thick steel, and thin steel wrapped with prestressing strands. Results obtained from incremental dynamic time history analyses on refined numerical finite element bridge models were utilized to evaluate the efficacy of different repair jackets application on the post-MS collapse safety of RC bridges subjected to AS attacks of various intensities. Numerical results indicated that the three repair jackets can effectively improve the bridge collapse capacity by approximately 20% under severe MS-severe AS even though they cannot restore the initial stiffness of damaged columns. Repair jackets for the severe MS-damaged columns were ineffective under moderate AS events and thus not required. Steel repair jackets exhibited higher energy dissipation under MS–AS sequences than FRP jackets. In the case of FRP jackets, bidirectional fiber wraps are recommended for plastic hinge confinement of MS-damaged bridge columns subjected to aftershocks.  相似文献   

16.
The finite element dynamic stability analysis of laminated composite skew structures subjected to in-plane pulsating forces is carried out based on the higher-order shear deformation theory (HSDT). The two boundaries of the instability regions are determined using the method proposed by Bolotin. The numerical results obtained for square and skew plates with or without central cutout are in good agreement with those reported by other investigators. The new results for laminated skew plate structures containing cutout in this study mainly show the effect of the interactions between the skew angle and other various parameters, for example, cutout size, the fiber angle of layer and thickness-to-length ratio. The effect of the magnitude of the periodic in-plane load on the dynamic instability index is also investigated.  相似文献   

17.
A micromechanical analysis of the representative volume element of a unidirectional hybrid composite is performed using finite element method. The fibers are assumed to be circular and packed in a hexagonal array. The effects of volume fractions of the two different fibers used and also their relative locations within the unit cell are studied. Analytical results are obtained for all the elastic constants. Modified Halpin–Tsai equations are proposed for predicting the transverse and shear moduli of hybrid composites. Variability in mechanical properties due to different locations of the two fibers for the same volume fractions was studied. It is found that the variability in elastic constants and longitudinal strength properties was negligible. However, there was significant variability in the transverse strength properties. The results for hybrid composites are compared with single fiber composites.  相似文献   

18.
A finite element approach for modeling of acoustic emission sources and signal propagation in hybrid multi-layered plates is presented. Modeling results are validated by Laser vibrometer measurements and comparison to calculated dispersion curves. We investigate hybrid plates as typically found in composite pressure vessels, composed of fiber reinforced polymers with arbitrary stacking sequences and attached metal or polymer materials. Hybrid plate thickness, the ratio between anisotropic and isotropic materials and material properties are varied. Lamb-wave propagation in a geometry representative of a pressure vessel is modeled. It is demonstrated, that acoustic emission sources in multi-layered structures can cause Lamb-waves superimposed by guided waves within the individual layers.  相似文献   

19.
Folding of coated paper is examined numerically using the finite element method. Particular emphasis is put on the behaviour of field variables relevant for cracking of the coating layers. In the numerical analysis, the basepaper is modelled as an anisotropic elastic–plastic material (both elastic and plastic anisotropy is accounted for) while the constitutive behaviour of the coating layers are approximated by classical (Mises) elastoplasticity. The numerical results suggest, among other things, that particular forms of plastic anisotropy can substantially reduce the maximum strain levels in the coating. It is also shown that delamination buckling, in the present circumstances, will have a very small influence on the strain levels in the coating layer subjected to high tensile loading.  相似文献   

20.
The buckling of a sandwich cylindrical shell under uniform external hydrostatic pressure is studied in three ways. The simplifying assumption of a long shell is made (or, equivalently, ‘ring’ assumption), in which the buckling modes are assumed to be two-dimensional, i.e. no axial component of the displacement field, and no axial dependence of the radial and hoop displacement components. All constituent phases of the sandwich structure, i.e. the facings and the core, are assumed to be orthotropic. First, the structure is considered a three-dimensional (3D) elastic body, the corresponding problem is formulated and the solution is derived by solving a set of two linear homogeneous ordinary differential equations of the second-order in r (the radial coordinate), i.e. an eigenvalue problem for differential equations, with the external pressure, p the parameter/eigenvalue. A complication in the sandwich construction is due to the fact that the displacement field is continuous but has a slope discontinuity at the face-sheet/core interfaces, which necessitates imposing ‘internal’ boundary conditions at the face-sheet/core interfaces, as opposed to the traditional two-end-point boundary value problems. Second, the structure is considered a shell and shell theory results are generated with and without accounting for the transverse shear effect. Two transverse shear correction approaches are employed, one based only on the core, and the other based on an effective shear modulus that includes the face-sheets. Third, finite element results are generated by use of the ABAQUS finite element code. In this part, two types of elements are used: a shear deformable shell element and a solid 3D (brick) element. The results from all these three different approaches are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号