首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to their high flexibility, high tensile strain and high fracture toughness, polymer optical fibers (POF) are excellent candidates to be utilized as embedded sensors for structure health monitoring of fiber reinforced composites. In 3D orthogonal woven structures yarns are laid straight and polymer optical fiber can be easily inserted during preform formation either as a replacement of constituents or between them. The results of the previous paper indicated how an optic fiber sensor can be integrated into 3D orthogonal woven preforms with no signal loss. This paper addresses whether incorporating POF into 3D orthogonal woven composites affects their structure integrity and performance characteristics. Range of 3D orthogonal woven composites with different number of layers and different weft densities was fabricated. The samples were manufactured with and without POF to determine the effect of embedding POF on composite structure integrity. Bending, tensile strength tests, and cross section analysis were conducted on the composite samples. Results revealed that integrity of 3D orthogonal woven composite was not affected by the presence of POF. Due to its high strain, embedded POF was able to withstand the stresses without failure as a result of conducting destructive tests of the composite samples. Micrograph of cross-section of composite samples showed that minimum distortion of the yarn cross-section in vicinity of POF and no presence of air pocked around the embedded POF which indicates that 3D woven preform provided a good host for embedded POF.  相似文献   

2.
为预测三维机织复合材料工艺引入的残余应力/应变,提出工艺制度优化方案,建立了一种工艺过程分析的多尺度模型.通过建立纤维尺度及纱线尺度代表体元(RVE),计算了成型过程中纤维纱线及三维机织复合材料的模量演化历程.考虑固化过程中树脂的化学收缩效应,在纱线尺度上开展热-化学-力学耦合分析,预测了细观残余应力-应变及其演化规律...  相似文献   

3.
The mode I delamination fracture toughness and fatigue strength of thin-section three-dimensional (3D) woven composite materials is experimentally determined. The non-crimp 3D orthogonally woven carbon–epoxy composites were thin (2 mm) and consequently their through-thickness z-binder yarns were inclined at a very steep angle (about 70°) from the orthogonal direction. The steep z-binder angle has a marked effect on the delamination toughening and fatigue strengthening mechanisms. Experimental testing revealed that the fracture toughness and fatigue resistance increased progressively with the volume content of z-binders. However, the steep angle caused the z-binder yarns bridging the delamination crack to deform and fail in shear and through-thickness tension, rather than in-plane tension which usually occurs in thick 3D woven composites. Mode I pull-off tests on a single woven z-binder yarn embedded within the composite revealed that the crack bridging traction load, strain energy absorption and failure mechanism were strongly affected by the steep angle.  相似文献   

4.
In this work, a cure monitoring system using dielectrometry and a fiber Bragg grating (FBG) sensor, was devised to measure the dissipation factor and thermal residual stress of carbon fiber-reinforced epoxy composite materials. Three rapid-cooling points, which were based on the cure initiation point, were chosen as test variables to investigate the effect of cure cycle on process-induced internal strain. The internal strains generated in the composite specimens were measured using embedded FBG sensors. Three-point bending tests were conducted to investigate the effect of thermal residual stress on the flexural strength of the composite specimens.  相似文献   

5.
This study proposes a new approach to determine key material parameters for stress/strain calculation of curing composite laminates and validate the simulation. Specifically, fiber Bragg grating (FBG) strain sensors are embedded in a composite laminate and the two key parameters for simulation, composite shrinkage strain and stiffness change during curing, are simultaneously determined from in-situ measurements by the embedded sensors. Furthermore, the simulation is validated using internal strain change during curing. This paper begins by presenting an overview of the proposed simulation scheme and by comparing it with previous approaches to highlight its advantages. Material parameter determination using a shear-lag effect at the edge of the embedded sensors is then described and the practical procedure to obtain the key parameters is demonstrated using a carbon/epoxy laminate. Finally, cure simulation is conducted for validation. Further extension to more general cases including thermoplastic composites is also discussed.  相似文献   

6.
研究了三维正交机织玄武岩/环氧树脂复合材料在180℃高温环境下老化不同时间后的低速冲击力学性能,测试得到了不同老化时间的试样在低速冲击过程中的载荷-位移曲线。研究发现:随着老化时间增加,三维正交机织玄武岩/环氧树脂复合材料能承受的最大载荷下降,位移逐渐增加,载荷-位移曲线斜率逐渐下降;随着冲击能量增加,老化条件相同的三维正交机织玄武岩/环氧树脂复合材料试样最大承受载荷增大,位移和曲线斜率增加。对高温老化后三维正交机织玄武岩/环氧树脂复合材料试样进行SEM观察,发现纤维与树脂基体脱粘有裂纹产生,且裂纹数目和面积随着老化时间延长而增加。   相似文献   

7.
In order to determine the dielectric constants of 3D orthogonal woven single fiber type (SFT) and hybrid composites from their component dielectric properties, a theoretical model is proposed based on the rule of binary mixtures. The model shows that with the same fiber volume fraction, a component with a larger cross-sectional area perpendicular to the electric field has a greater contribution to the composite dielectric constant. For experimental verification, SFT basalt/epoxy and aramid (Kevlar 129)/epoxy as well as interply and intraply basalt/aramid/epoxy 3D orthogonal woven hybrid composites were fabricated and their dielectric properties were measured using the waveguide method at a frequency range of 8–12 GHz. At 10 GHz, the experimental results agreed well with the calculated results from the model for the SFT composites, while a positive hybrid effect on the dielectric constant was observed for the two hybrid composites.  相似文献   

8.
采用瞬态热线法和闪光法分别测量了多种结构参数的三维机织碳纤维/环氧树脂复合材料的导热系数。通过对3D正交机织碳纤维/环氧树脂复合材料的有限元模拟可以看出,3D正交机织碳纤维/环氧树脂复合材料内经纱、纬纱和Z向纱的导热作用在不同的受热形式下会发生变化。采用瞬态热线法测量时,2.5D机织碳纤维/环氧树脂复合材料的导热系数低于2.5D经向增强结构,同时高于3D正交结构,而采用闪光法测量时,2.5D经向增强和3D正交碳纤维/环氧树脂复合材料的导热系数均小于2.5D机织结构。这是由于在使用不同的测量方法时,三维机织碳纤维/环氧树脂复合材料内部相同的纱线系统在导热过程中所起的作用并不相同。随着纤维体积含量的提高,瞬态热线法和闪光法测得的2.5D机织碳纤维/环氧树脂复合材料的导热系数都在不断提高。由于经纱的屈曲,采用闪光法测量时,导热性能提升更加明显。研究结果表明,三维机织碳纤维/环氧树脂复合材料在不同受热形式下具有不同的热响应机制。  相似文献   

9.
Monotonic, multi-step and cyclic short beam shear tests were conducted on 2D and 3D woven composites. The test results were used to determine the effect of z-yarns on the inter-laminar shear strength as well as the multi-loading behavior. The presence of z-yarns was found to affect not only the inter-laminar shear strength of the composite but also the behavior of the composite beyond the elastic limit. Microscopic examination of the damaged specimens revealed large delamination cracks in 2D woven composites while delamination cracks were hindered by z-yarns in 3D composites. This crack arrest phenomena resulted in a reduction in inter-laminar crack lengths and a higher distribution of the micro-cracks throughout the 3D composite. The multi-step and cyclic loading tests are found to be useful in the monitoring of specimen behavior during short beam shear testing. The induced damage was quantified in terms of the loss of strength and stiffness during each loading cycle. It was found that while the 2D composites have higher damage resistance, the 3D composites have a higher damage tolerance.  相似文献   

10.
Sensor embedding is one of the main operations in dealing with composites in-core instrumentation. In this work, an alternative encapsulation technique called “monitoring patch” is proposed to achieve correct sensor embedding, to facilitate the industrialised instrumentation procedure and to adapt the sensors according to the geometry and material heterogeneities required of the composite structures. The monitoring patch is mainly developed with the aim to reduce the variability effects produced if the sensor alone is placed. In this initial study, a first patch’s configuration is manufactured with CTMI pre-impregnate epoxy–woven glass, hosting two kinds of silicon prism sensors. The monitoring patch is then placed in the thick middle plane of an epoxy-carbon M21 T700GC quasi-isotropic plate. The plates are instrumented with strain gauges and tested using digital image correlation (DIC). The strain field maps are calculated to analyse the over-strain zones and to infer fracture paths. At the same time, a FEM model is developed to compare the numerical and the experimental observations. The results show that the mechanical strength of the instrumented plates is not significantly affected by the presence of the patch. The failure path of the instrumented plates with monitoring patch is found along the patch perimeter; therefore, the sensors can be recovered without damage even after the failure of the instrumented structure. The feasibility of the monitoring patch is discussed with other embedding techniques. In further studies, the monitoring patch will host a streaming sensor with an aim to carry out in-core strain measurements.  相似文献   

11.
Hyperelastic modelling for mesoscopic analyses of composite reinforcements   总被引:2,自引:0,他引:2  
A hyperelastic constitutive law is proposed to describe the mechanical behaviour of fibre bundles of woven composite reinforcements. The objective of this model is to compute the 3D geometry of the deformed woven unit cell. This geometry is important for permeability calculations and for the mechanical behaviour of the composite into service. The finite element models of a woven unit cell can also be used as virtual mechanical tests. The highlight of four deformation modes of the fibre bundle leads to definition of a strain energy potential from four specific invariants. The parameters of the hyperelastic constitutive law are identified in the case of a glass plain weave reinforcement thanks to uniaxial and equibiaxial tensile tests on the fibre bundle and on the whole reinforcement. This constitutive law is then validated in comparison to biaxial tension and in-plane shear tests.  相似文献   

12.
In the aircraft industry the use of externally bonded composite repairs has become an accepted way of repairing fatigue, or corrosion, damaged metallic structural components. However, current NDI and damage assessment techniques for composite repairs are passive and generally performed on ground. The challenge is to develop new techniques utilising recent analytical and experimental tools. This report examines the use of optical fibre sensors. Optical fibres offer a means of monitoring the load transfer process in these repairs, and can therefore be used to provide an indication of the integrity of the repair. This paper describes the use of an array of fibre Bragg grating strain sensors (FBGs) for the in situ monitoring of bonded repairs to aircraft structures and, in particular, the monitoring of crack propagation beneath a repair. In this work the FBGs have been multiplexed using a combination of wavelength and spatial techniques employing a tunable Fabry–Pérot (FP) filter to track individual gratings. The multiplexed FBGs were then surface-mounted on a boron–epoxy unidirectional composite patch bonded to an aluminium component. The sensors were located so as to monitor the changing stress field associated with the propagation of a crack beneath the patch. The ability of relating experimental results to sensor readings is then confirmed using both a thermo-elastic scan of the patch and 3D finite element analysis.  相似文献   

13.
Strain monitoring of a carbon/epoxy composite cross-ply laminate ([05/905]s) during thermoforming was conducted by using fiber Bragg grating (FBG) sensors. The entire process was simulated by employing finite element analysis (FEA) by taking into consideration the phase changes of the epoxy resin. For the precise simulation of the curing process, a dielectrometry sensor was used to detect the epoxy-resin dissipation factor, which in turn was used to identify the curing point. To investigate the phase changes and consolidation of the composite laminate by employing FEA, modulus changes with temperature were measured by dynamic mechanical analysis (DMA), and the permeability was estimated by measuring the fiber volume fraction according to the curing temperature. As the epoxy resin changed from a liquid to solid phase, the strain generated along the carbon fibers dynamically changed, and the analysis results generally predicted the strain variation quite well. To apply this simulation technique to practical structures, a composite-aluminum hybrid wheel was analyzed and experimentally verified.  相似文献   

14.
The objective of this paper was to predict the residual strength of post impacted carbon/epoxy composite laminates using an online acoustic emission (AE) monitoring and artificial neural networks (ANN). The laminates were made from eight-layered carbon (in woven mat form) with epoxy as the binding medium by hand lay-up technique and cured at a pressure of 100 kg/cm2 under room temperature using a 30 ton capacity compression molding machine for 24 h. 21 tensile specimens (ASTM D3039 standard) were cut from t...  相似文献   

15.
The term “self-sensing composites” is sometimes used to describe the case where the reinforcing glass fibres in advanced fibre-reinforced composites are used as the sensors for chemical process-monitoring (cure monitoring). This paper presents conclusive evidence to demonstrate that reinforcing E-glass fibres can be used for in situ cure monitoring. The cure behaviour of an epoxy/amine resin system was compared using evanescent wave spectroscopy via the reinforcing E-glass fibres and conventional transmission Fourier transform infrared spectroscopy. This paper also reports for the first time that evanescent wave spectroscopy via E-glass fibres can be used to detect the presence of silane coupling agents. Preliminary results indicated that the cure kinetics on the E-glass fibre surface, as observed using evanescent wave spectroscopy, were influenced by the silane coupling agent.  相似文献   

16.
三维正交机织复合材料的动态压缩性能   总被引:1,自引:1,他引:0  
本文作者利用分离式Hopkinson压杆装置对玻璃纤维三维正交机织复合材料进行了高应变率下面外、面内方向的压缩试验,并在万能试验机下进行了相应的准静态压缩。获得3 个高应变率及准静态下的应力-应变曲线,观察了试样的破坏形貌。结果表明:玻纤三维正交机织复合材料是应变率敏感材料,最大应力、压缩模量随着应变率的增大而增大。三维正交结构使复合材料体现出各向异性:面外的最大应力、失效应变比面内大;面内的压缩模量大于面外,且压缩模量对于应变率的变化比面外方向敏感;经纬向相比,纬向的最大应力大于经向。  相似文献   

17.
The present study focuses on the design of a Naca cowling of an acrobatic ultra-light airplane, where the traditional woven glass/epoxy laminate utilized for the production has been replaced by woven hemp reinforced epoxy composite. Specialized software (Fluent and ANSYS) was used for configuration, design and analysis. The results showed comparable mechanical performance, about same weight, but easier disposal and better eco-friendly characteristics as compared to their synthetic counterpart. The engine cover, produced by the use of hemp/epoxy composites, demonstrates the effective possibility to produce semi-structural aeronautical components using natural fiber composites in substitution of glass ones.  相似文献   

18.
19.
In this paper, evaluation of 3D orthogonal woven fabric composite elastic moduli is achieved by applying meshfree methods on the micromechanical model of the woven composites. A new, realistic and smooth fabric unit cell model of 3D orthogonal woven composite is presented. As an alternative to finite element method, meshfree methods show a notable advantage, which is the simplicity in meshing while modeling the matrix and different yarns. Radial basis function and moving kriging interpolation are used for the shape function constructions. The Galerkin method is employed in formulating the discretized system equations. The numerical results are compared with the finite element and the experimental results.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号