首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various catastrophes related to extreme weather events such as floods, hurricanes, droughts and heat waves occurring on the Earth in the recent times are definitely a clear warning sign from nature questioning our ability to protect the environment and ultimately the Earth itself. Progressive release of greenhouse gases (GHG) such as CO2 and CH4 from development of various energy-intensive industries has ultimately caused human civilization to pay its debt. Realizing the urgency of reducing emissions and yet simultaneously catering to needs of industries, researches and scientists conclude that renewable energy is the perfect candidate to fulfill both parties requirement. Renewable energy provides an effective option for the provision of energy services from the technical point of view. In this context, biomass appears as one important renewable source of energy. Biomass has been a major source of energy in the world until before industrialization when fossil fuels become dominant and researches have proven from time to time its viability for large-scale production. Although there has been some successful industrial-scale production of renewable energy from biomass, generally this industry still faces a lot of challenges including the availability of economically viable technology, sophisticated and sustainable natural resources management, and proper market strategies under competitive energy markets. Amidst these challenges, the development and implementation of suitable policies by the local policy-makers is still the single and most important factor that can determine a successful utilization of renewable energy in a particular country. Ultimately, the race to the end line must begin with the proof of biomass ability to sustain in a long run as a sustainable and reliable source of renewable energy. Thus, the aim of this paper is to present the potential availability of oil palm biomass that can be converted to hydrogen (leading candidate positioned as the energy of the millennium) through gasification reaction in supercritical water, as a source of renewable energy to policy-makers. Oil palm topped the ranking as number 1 fruit crops in terms of production for the year 2007 with 36.90 million tonnes produced or 35.90% of the total edible oil in the world. Its potentiality is further enhanced by the fact that oil constitutes only about 10% of the palm production, while the rest 90% is biomass. With a world oil palm biomass production annually of about 184.6 million tons, the maximum theoretical yield of hydrogen potentially produced by oil palm biomass via this method is 2.16×1010 kg H2 year−1 with an energy content of 2.59 EJ year−1, meeting almost 50% of the current worldwide hydrogen demand.  相似文献   

2.
The key objective of this study is the examination of the regulatory and policy framework of the feed-in-tariff (FiT) scheme, specifically its effect on both the electricity pricing as well as the local and European renewable energy sources (RES) market, and accordingly the definition of its feasibility as a scheme for the further development and promotion of renewable energy technologies (RETs). This work discusses the FiT scheme implementation for photovoltaics (PVs) in four case study countries - Denmark, Germany, Cyprus, and Spain. A model describing the conditions under which a FiT scheme is led to collapse is also introduced and a parametric analysis towards revealing the sensitivity of the different parameters affecting it, is delivered. The study concludes with significant policy implications that should be considered for future implementation of the scheme. For the prevention of the collapse of the scheme, the tariff's value ought to be determined by each country's government based on a set of influencing factors including the operational, capital and investment costs of each RET, the standard cost of renewable energy (RE) generation and the avoidance cost, which would be regularly reviewed depending on the excess of the annual capacity.  相似文献   

3.
Malaysia has an abundance of energy resources, both renewable and non-renewable. The largest non-renewable energy resource found in Malaysia is oil, and second, is natural gas, primarily liquefied natural gas. The production and consumption of oil, gas and coal in Malaysia are given in this paper. The energy demand and supply by source are also shown in relation to the country’s fuel diversification policy. In order to reduce the overall dependence on a single source of energy, efforts were undertaken to encourage the utilization of renewable resources. Forest residue and oil palm biomass are found to be potentially of highest energy value and considered as the main renewable energy option for Malaysia.Palm oil and related products represent the second largest export of Malaysia. The total oil palm planted area in Malaysia has increased significantly in recent years. This paper gives a detailed representation of oil palm planted and produced together with its yield from the year 1976 onwards. The large amounts of available forest and palm oil residues resulting from the harvest can be utilized for energy generation and other by-products in a manner that also addresses environmental concerns related to current waste disposal methods.  相似文献   

4.
Oil palm biomass as a sustainable energy source: A Malaysian case study   总被引:3,自引:0,他引:3  
It has been widely accepted worldwide that global warming is by far the greatest threat and challenge in the new millennium. In order to stop global warming and to promote sustainable development, renewable energy is a perfect solution to achieve both targets. Presently million hectares of land in Malaysia is occupied with oil palm plantation generating huge quantities of biomass. In this context, biomass from oil palm industries appears to be a very promising alternative as a source of raw materials including renewable energy in Malaysia. Thus, this paper aims to present current scenario of biomass in Malaysia covering issues on availability and sustainability of feedstock as well as current and possible utilization of oil palm biomass. This paper will also discuss feasibility of some biomass conversion technologies and some ongoing projects in Malaysia related to utilization of oil palm biomass as a source of renewable energy. Based on the findings presented, it is definitely clear that Malaysia has position herself in the right path to utilize biomass as a source of renewable energy and this can act as an example to other countries in the world that has huge biomass feedstock.  相似文献   

5.
Palm oil is one of the most important oils in the world and huge amounts of palm biomass wastes are generated through palm oil extracting process which could endanger the environment. Meanwhile, electricity shortage is getting worse due to lack of fossil fuel. To convert biomasses from palm oil industry for power generation is a beneficial approach for both power shortage and environmental degradation. In order to investigate and optimize the generation process of power and heat from the waste biomass in palm oil industry, an analytic study of a combined heat and power plant in a palm oil mill fuelled with sustainable and renewable biomass wastes was conducted using ECLIPSE software through a case study in Malaysia. The resources of the biomass wastes in the mill were identified and the samples were collected on site. The waste samples were analysed in laboratory and their calorific value, chemical composition and biomethane potential were found. A simulation model was then set up using ECLIPSE software and the model was validated using the practical data of the CHP plant. Three different combinations of the biomass wastes, including EFB and Shell as fuel for power generation, MF co-firing with Biogas, and power generation using KS, EFB and Biogas with preheaters, were used in the simulation. It was found that all of the three combinations were able to produce enough electrical power and heat (steam) to meet the power and heat demand for the production process. The simulation results indicated that the palm solid biomass wastes and the biogas produced by mill effluent were able to provide enough sustainable and renewable fuel for the palm oil production process; and it is possible to provide extra electricity for the nearby area, which is one of the best option for utilization of palm oil biomass wastes.  相似文献   

6.
Malaysia and Indonesia are the largest producers of palm oil product. The palm oil industry has contributed the biggest income to the countries for many years. Moreover, palm oils has emerged as one of the most important oils in the world’s oils and the market of fats. About 90% of palm oil is used as food related products worldwide, and the other 10% is used for basic raw material for soap. There are more than a hundred palm oil processing mills in the two countries. As such, a lot of savings can be done by using the fiber and shell from the processing wastes as an alternative fuel for electricity generation for this industry. This paper deals with energy conversion from the fiber and shell of the industry wastes as an alternative energy source for the palm oil mill industry in the two countries mentioned. The study concentrates on using the fiber and shell obtained from the processing of palm oil as fuels for the boiler instead of fossil fuel. In addition, the possibility of excess air and fuel air ratio for the fiber and shell combustion process is also discussed. Furthermore, it has been found that the shell and fiber alone can supply more steam and electricity than is required. Some palm oil mills in Malaysia and Indonesia have applied this strategy successfully. The FELDA palm oil mill, with the capacity 30–60 tons FFB/h, in Sungai Tengi, Selangor, Malaysia has been selected for this research.  相似文献   

7.
Stepping into the new globalized and paradigm shifted era, a huge revolution has been undergone by the oil palm industry. From a humble source of the edible oil, today oil palm has demonstrated a wide variety of uses, almost by every part of its plant. With the price of the crude petroleum hitting record height every other day, the feasibility of palm oil and oil palm biomass as renewable substitutes for the production of biodiesel has been proposed. Lately, its development has received various criticisms, mainly hinges on the huge generation of solid residues which are currently no profitable use. In view of the aforementioned reason, this paper presents a state-of-the-art review of oil palm industry, its fundamental background studies, propagation and industrial applications. Moreover, the recent developments on the preparation of activated carbons from oil palm waste, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expansion of oil palm waste in the field of adsorption science represents a potentially viable and powerful tool, leading to the superior improvement of pollution control and environmental conservation.  相似文献   

8.
Empty fruit bunch (EFB) from oil palm is one of the potential biomass to produce biofuels like bio-oil due to its abundant supply and favorable physicochemical characteristics. Confirming the assertion, this paper presents an overview of EFB as a feedstock for bio-oil production. The fundamental characteristics of EFB in terms of proximate analysis, ultimate analysis and chemical composition, as well as the recent advances in EFB conversion processes for bio-oil production like pyrolysis and solvolysis are outlined and discussed. A comparison of properties in terms of proximate analysis, ultimate analysis and fuel properties between the bio-oil from EFB and petroleum fuel oil is included. The major challenges and future prospects towards the utilization of EFB as a useful resource for bio-oil production are also addressed.  相似文献   

9.
The study evaluated the contribution of various energy sources to the smallholder processing of oil palm in Nigeria. Ten small-scale palm oil processing mills were visited at Elele, River State, Nigeria for sample collection. The weight of the various solid wastes generated and utilized for boiling process were measured including EFB (empty fruit bunch), PPF (palm press fiber), PKS (palm kernel shell) and chaff, while the volume of diesel used for digestion was also measured. The processing of 1 tonne of FFB (fresh fruit bunch) in the mill yields 63.4–77.1 L of CPO while the following waste by-products were generated from the FFB; 24 to 31% EFB, 23 to 28% PPF, 10 to 12% PKS and 1.4 to 2.4% chaff. Out of the total biomass generated by the mills only 12.74–22.25% EFB, 24.43–33.38% PPF, 2.71–6.71% PKS and 15.12–49.04% chaff were utilized by the various mills for fruit boiling/sterilization, indicating that the majority of biomass wastes is unutilized in the mills. The volume of diesel utilized by the mills for digestion is quite low ranging from 0.6 to 0.8 L. The gross calorific values of the waste biomass are EFB 16.970–18.537 MJ/kg, PPF 16.472–21.037 MJ/kg and PKS 19.378–21.614 MJ/kg. The total energy utilized by the mills for processing 1 tonne of FFB ranged from 2179.43 to 3014.31 MJ. Out of these, biomass energy accounted for 98.22–98.75%, while fossil fuel accounted for the remaining 1.25–1.78%. The study concluded by suggesting innovative ways of substituting the <2% fossil fuel contribution with the direct use of pre-heated palm oil to fuel the digesters.  相似文献   

10.
AbstractFor the European Union's Member States 2001/77/EC Directive on the promotion of electricity produced from renewable energy sources in the internal electricity market determined targets for 2010 of 21% share of electricity from renewable energy sources in total electricity consumption. Particular Member States adopted different measures for development of renewable and in consequence they achieved different results. Poland, being Member State of the EU since 2004 has accepted target of 7.5% for electricity generated from renewable energy sources until 2010. Currently, in this decade, new 2009/28/EC Directive on the promotion of the use of energy from renewable sources plays significant role in development of renewable energy sources. Directive set new target for 2020. Nowadays is a time for summary and assessment of results fulfilling Directives and monitor progress of new targets. Article presents measures implemented for renewable source energy development, also current state and perspectives of using of renewable energy sources in Poland and in the EU.  相似文献   

11.
Effective policy and regulatory frameworks are paramount to incentivising the deployment of renewable energy to achieve long term reductions in carbon emissions. Australia's renewable energy policy has taken significant steps towards encouraging the deployment of lower-emission energy generation. Significant policy barriers still exist at the federal and state levels, however, which have reduced the effectiveness of a concerted national effort to deploy renewables. The current policy landscape has favoured mature technologies which present the lowest investment risk at the expense of emerging options which may present greater efficiency and emissions reduction gains. The lack of support for emerging technologies delays their effective deployment and the accumulation of highly skilled human capital, until the medium to long term. This paper outlines the key policy frameworks, incentives and regulatory environment which encompasses the renewable energy sector, and presents a critical analysis of the barriers faced by the industry.  相似文献   

12.
Based on extensive research interviews and supplemented with a review of the academic literature, this article assesses the best way to promote renewable energy and energy efficiency. It begins by briefly laying out why government intervention is needed, and then details the four most favored policy mechanisms identified by participants: eliminating subsidies for conventional and mature electricity technologies, pricing electricity accurately, passing a national feed-in tariff, and implementing a nationwide systems benefit fund to raise public awareness, protect lower income households, and administer demand side management programs. Drawing mostly from case studies in the United States, the article also discusses why these policy mechanisms must be implemented comprehensively, not individually, if the barriers to renewables and energy efficiency are to be overcome.  相似文献   

13.
Brazil has launched the PROINFA program, a regulatory mechanism to incentivize renewable electricity generation. In the light of this new framework, the best economical option for cogeneration was analyzed using one of the biomass resources available in Brazil-Babassu. Thus not only the possible power production but also the potential of such a regulatory tool to enhance the electricity production based on this biomass source, was analyzed. The power production was based on a steam power cycle cogeneration technology within the Babassu palm oil extraction industry in Brazil (Orbignya ssp. (Palmae)). Was used as base for this study: the energetic matrix for the oil extraction plants (for the two main profiles: oil extraction and refining only, and greater vertical integration with the production of other associated products obtained from the Babassu palm oil), utilization of an extraction–condensation turbine, and steam production operating at three levels of temperature and pressure (2.06 MPa/350 °C, 4.56 MPa/420 °C and 6.2 MPa/450 °C). To analyze the economic performance, the framework drawn up by the PROINFA was taken. From the analysis, the best economical/technical option for the design of the cogeneration system was found to be in industrial units with extraction and treatment of crude Babassu oil—steam generation at 4.56 MPa and 420 °C and, for units with a more vertically integrated production scheme—steam generated at 6.2 MPa and 450 °C. As a result, it became clear that the given framework may help the development of new renewable energy sources, but it does not give the necessary threshold to start new projects, neither does it incentive the maximization of the power production for this specific biomass resource.  相似文献   

14.
Ibrahim Yüksel   《Renewable Energy》2008,33(4):802-812
Turkey, with its young population and growing energy demand per person, its fast growing urbanization, and its economic development, has been one of the fast growing power markets of the world for the last two decades. It is expected that the demand for electric energy in Turkey will be 300 billion kWh by the year 2010 and 580 billion kWh by the year 2020. Turkey is heavily dependent on expensive imported energy resources that place a big burden on the economy and air pollution is becoming a great environmental concern in the country. In this regard, renewable energy resources appear to be the one of the most efficient and effective solutions for clean and sustainable energy development in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. This article presents a review of the potential and utilization of the renewable energy sources in Turkey.  相似文献   

15.
《能源学会志》2020,93(2):711-722
Gasification represents an attractive pathway to generate fuel gas (i.e., syngas (H2 and CO) and hydrocarbons) from oil palm biomass in Malaysia. Torrefaction is introduced here to enhance the oil palm biomass properties prior to gasification. In this work, the effect of torrefaction on the gasification of three oil palm biomass, i.e., empty fruit bunches (EFB), mesocarp fibres (MF), and palm kernel shells (PKS) are evaluated. Two gasifying agents were used, i.e., CO2 and steam. The syngas lower heating values (LHVsyngas) for CO2 gasification and steam gasification were in the range of 0.35–1.67 MJ m−3 and 1.61–2.22 MJ m−3, respectively. Compared with EFB and MF, PKS is more effective for fuel gas production as indicated by the more dominant emission of light hydrocarbons (CH4, C2H4, and C2H6) in PKS case. Gasification efficiency was examined using carbon conversion efficiency (CCE) and cold gas efficiency (CGE). CCE ranges between 4% and 55.1% for CO2 gasification while CGE varies between 4.8% and 46.2% and 27.6% and 62.9% for CO2 gasification and steam gasification, respectively. Our results showed that higher concentration of gasifying agent promotes higher carbon conversion and that steam gasification provides higher thermal efficiency (CGE) compared to CO2 gasification.  相似文献   

16.
Algeria plays a very important role in world energy markets, both as a significant hydrocarbon producer and as an exporter, as well as a key participant in the renewable energy market. Due to its geographical location, Algeria holds one of the highest solar potentials in the world. This paper presents a review of the present renewable energy situation and assesses present and future potential of renewable energy sources (RESs) in Algeria. This paper also discusses the trends and expectation in solar systems applications and the aspects of future implementation of renewable energies in the Middle East and North Africa (MENA) region status. The problem related to the use of RES and polices to enhance the use of these sources are also analysed in this paper. In addition the available capacity building, the technical know-how for each RES technology and localizing manufacturing of renewable energy equipments are defined. The co-importance of both policy and technology investments for the future Algerian markets of RES and competitiveness of the solar/wind approach is emphasized. Some examples of policy significantly impacting Algerian markets are reviewed, and the intention of the new Algerian RES initiative is discussed.  相似文献   

17.
It is argued: (i) that the harvesting of terrestrial solar radiation to perform useful work is at least an order of magnitude more efficient when carried out by solar-thermal or solar-photovoltaic processes than when carried out by way of biomass conversion and (ii) that, therefore, biomass energy is unlikely to compete successfully with inanimately harvested solar energy—except of course in restricted niche applications.  相似文献   

18.
Several recent studies have proposed fast transitions to energy systems based on renewable energy technology. Many of them dismiss potential physical constraints and issues with natural resource supply, and do not consider the growth rates of the individual technologies needed or how the energy systems are to be sustained over longer time frames. A case study is presented modelling potential growth rates of the wind energy required to reach installed capacities proposed in other studies, taking into account the expected service life of wind turbines. A sustained commissioning model is proposed as a theoretical foundation for analysing reasonable growth patterns for technologies that can be sustained in the future. The annual installation and related resource requirements to reach proposed wind capacity are quantified and it is concluded that these factors should be considered when assessing the feasibility, and even the sustainability, of fast energy transitions. Even a sustained commissioning scenario would require significant resource flows, for the transition as well as for sustaining the system, indefinitely. Recent studies that claim there are no potential natural resource barriers or other physical constraints to fast transitions to renewable energy appear inadequate in ruling out these concerns.  相似文献   

19.
The interest and actions towards introducing renewables for off-grid regions has increased due to their ostensible cost-effectiveness, eco-friendliness and quality services provided. Nevertheless, in many isolated areas diesel generators appear as a common option, confirming that there is a need for financial support mechanisms that aid the introduction of renewables due to their higher initial investment costs.This paper proposes a so-called ‘tropicalisation’ of the Feed-in Tariff scheme to promote the introduction of hybrid systems in isolated communities based on the idea of awarding for each kWh produced by renewable energies a premium value during a guaranteed period of time. The proposed Renewable Energy Premium Tariff (RPT) scheme is an alternative mechanism to the usual initial investment donation for off-grid energy development projects by recognising the production of renewable electricity and opting for a long-term sustainability of the projects. Ecuador presents ideal conditions to study the introduction of such a ‘tropicalised’ scheme since a Feed-in Law including off-grid projects was established in 2002 and since there are governmental and local efforts for the introduction of renewable hybrids in isolated regions.Modelling of the introduction of photovoltaics (PVs) into diesel systems for several mini-grids located in isolated regions of Ecuador has been performed, and included a detailed financial analysis for optimisation of RPT values and a comparison with existing stand-alone diesel systems. The results show the cost-effectiveness of PV/diesel hybrids over diesel gensets, taking into account present and future diesel prices. To obtain long-term sustainability of the project, the RPT values are set at 0.70–1.20$ kWh covering the operability of the whole system for 20 years, where the renewable fraction should have the largest share in the hybrid system. The proposed mechanism is expected to aid the introduction of renewable technologies to bring solutions and sustainable energy options to final users of off-grid isolated regions.  相似文献   

20.
This paper reviews the development of renewable energy in Germany from 1973 to 2003. It investigates the relative importance of energy policy and green power marketing in shaping the renewable energy market. More than a decade of consistent policy support for renewables under the feed-in law (StrEG) and its successor (EEG) has been an important driver for increasing renewable electricity generation to date, putting the country in a better position than most of its peers when it comes to achieving European Union targets for renewable energy. Green power marketing driven by customer demand, on the other hand, is growing, but has had limited measurable impact so far. We discuss potential intangible benefits of green power marketing and scenarios for future market development. The paper concludes with lessons that can be learned from the German case for policy design and market development in other countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号