首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs for large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. However, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.  相似文献   

2.
G. Orer  A. Ozdamar   《Renewable Energy》2007,32(8):1317-1327
Several studies have been made using submerged plates for wave-damping purpose. A pulsating flow occurs opposite to the direction of wave propagation below these wave breakers. This water flow can be used for energy production purposes. In this study, the energy efficiency of the plate wave energy converter is determined experimentally. The length of the plate L=1 m, the water depth d=60 cm, the width of the plate b=60 cm and the thickness t=2 cm were held constant through all the experiments. Each experiment set has a total number of 20 different wave properties composed of T=1.16, 1.50, 1.87 and 2.05 s wave periods and H=2, 4, 6, 8 and 10 cm wave height values. The velocity and the wave length of the water flow occuring below the plate were measured for several conditions such as: 1. the plate only, 2. the plate and a triangular structure below it, with five different heights, 3. The plate and a vertical wall below it, with two different heights. In this manner, the submerged plate wave energy converter efficiency values were determined for 20 different conditions. It is understood that the efficiency of the submerged plate wave energy converters can reach up to 60% and the existence of a vertical wall below the plate rather than a triangular form is more efficient.  相似文献   

3.
Ross Henderson   《Renewable Energy》2006,31(2):271-283
The economic viability of a wave energy converter depends largely on its power take-off system. Active control of the power take-off is necessary to maximise power capture across a range of sea-states and can also improve survivability. The high force, low speed regime of wave energy conversion makes it a suitable application for high-pressure hydraulics.This paper describes the hydraulic power take-off system employed in the Pelamis wave energy converter. The process of the system's development is presented, including simulation and laboratory tests at 1/7th and fullscale. Results of efficiency measurements are also presented.  相似文献   

4.
This study evaluates the influence of wave climate tunability on the performance of a generic Wave Energy Converter (WEC) for different climate scenarios. The generic WEC is assumed to be composed of an array of heaving, floating cylinders. In this study, two natural periods for the cylinders of 4 s and 8 s (typical of enclosed seas and the mean Atlantic swell, respectively) and a location-tunable cylinder are considered to evaluate the influence of tuning on the power performance of the cylinder. The WEC power matrix is computed using a frequency domain model, and the performance of the WEC is evaluated along the global coasts; the met-ocean data originated from the global reanalysis database (GOW) from Reguero et al. (2012). The performance of the WEC is evaluated using two parameters: the capture width ratio (CWR), which evaluates the efficiency of the converter at each location, and the kW/Ton (KWT) parameter, which evaluates the efficiency of the converter using “economic” terms. Tuning a converter for each location displayed a positive CWR; however, the KWT was low after WEC tuning because of the weight of the structures required to tune the converter that experiences high peak periods.  相似文献   

5.
A realistic performance analysis of oscillating water column wave energy converters (WECs) addresses to a set of non-linear differential equations that need to be integrated in time, by using a stochastic approach, under the hypothesis of random wind-generated sea waves, for all the sea states which characterize the location of the system. Non-linearities of the differential equations have several origins:
• minor and major losses of the unsteady flow of water and air;
• compressibility of air and heat exchange with the walls of the air chamber;
• non-linear characteristics of the turbine.
Under the hypothesis of random sea waves with Gaussian distribution, the authors propose an original methodology for linearizing the differential equations that describe the flow motion inside a wholly submerged WEC. Under such hypothesis, the linearized model can be used for predicting the power output by means of the calculations in the frequency domain and for control design. The developed methodology has been applied to the estimation of the performance of the new “resonant sea wave energy converters”, called REWEC, patented by Boccotti in 1998, and consisting of several caissons, characterized by a structure similar to the caissons of the traditional breakwaters and placed on the seabed, close one to each other, to form a submerged breakwater. Each caisson is connected to a vertical duct wholly beneath the sea level, where a hydraulic Wells turbine is placed.The matching between turbine and resonance characteristic of the system is carefully analysed in order to maximize the energy conversion efficiency.Some results, given for a small installation in the Mediterranean sea, confirm that the REWEC system is able to absorb a large share of the incident wave energy due to a very simple regulation system which permits the tuning on sea states with different significant heights.  相似文献   

6.
Prototype testing of the wave energy converter wave dragon   总被引:2,自引:0,他引:2  
The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power.In the period from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57×27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy converter.The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon.In the period May 2003 to January 2005 an extensive measuring program has been carried out, establishing the background for optimal design of the structure and regulation of the power take off system. Planning for deployment of a 4 MW power production unit in the Atlantic by 2007 is in progress.  相似文献   

7.
The offshore wave energy resource in the East China Sea (ECS) off the coast of the southern East China is assessed using wave buoy data covering the period of 2011−2013. It is found that the averaged offshore wave power was approximately 13 kW m−1 in the region of interest. Most of the offshore wave energy in the ECS is contributed by the sea states with significant wave heights between 1.5 m and 3.5 m and with wave energy periods between 6 s and 8 s. Seasonal variations are detected in the wave characteristics of significant wave height and wave power. The predominant wave directions are mainly from the II quadrant and the IV quadrant, respectively, in winter and summer, in accordance with the monsoon characteristics in the ECS. Wave heights, periods and power are generally higher in winter and autumn, and weaker in spring and summer; however, extreme values occur in some summer and autumn months due to the extreme conditions caused by typhoons passing over this region. These extreme sea states do not contribute much to the total annual energy, mainly because of their low occurrence, but may bring risks to the wave energy converters.  相似文献   

8.
This paper introduces a novel control approach to maximizing the output energy of an adjustable slope angle wave energy converter (ASAWEC) with oil-hydraulic power take-off. Different from typical floating-buoy WECs, the ASAWEC is capable of capturing wave energy from both heave and surge modes of wave motions. For different waves, online determination of the titling angle plays a significant role in optimizing the overall efficiency of the ASAWEC. To enhance this task, the proposed method was developed based on a learning vector quantitative neural network (LVQNN) algorithm. First, the LVQNN-based supervisor controller detects wave conditions and directly produces the optimal titling angles. Second, a so-called efficiency optimization mechanism (EOM) with a secondary controller was designed to regulate automatically the ASAWEC slope angle to the desired value sent from the supervisor controller. A prototype of the ASAWEC was fabricated and a series of simulations and experiments was performed to train the supervisor controller and validate the effectiveness of the proposed control approach with regular waves. The results indicated that the system could reach the optimal angle within 2s and subsequently, the output energy could be maximized. Compared to the performance of a system with a vertically fixed slope angle, an increase of 5% in the overall efficiency was achieved. In addition, simulations of the controlled system were performed with irregular waves to confirm the applicability of the proposed approach in practice.  相似文献   

9.
A floating type pendulum wave energy converter(FPWEC) with a rotary vane pump as the power take-off system was proposed by Watabe et al.in 1998.They showed that this device had high energy conversion efficiency.In the previous research,the authors conducted 2D wave tank tests in regular waves to evaluate the generating efficiency of FPWEC with a power take-off system composed of pulleys,belts and a generator.As a result,the influence of the electrical load on the generating efficiency was shown.Continuously,the load characteristics of FPWEC are pursued experimentally by using the servo motors to change the damping coefficient in this paper.In a later part of this paper,the motions of the model with the servo motors are compared with that of the case with the same power take-off system as the previous research.From the above experiment,it may be concluded that the maximum primary conversion efficiency is achieved as high as 98%at the optimal load.  相似文献   

10.
The paper concerns the development of the PTO (power take-off) control of an OWC (oscillating-water-column) spar-buoy wave energy converter. The OWC spar-buoy is an axisymmetric device consisting of a submerged vertical tail tube open at both ends, rigidly fixed to a floater that moves essentially in heave. The oscillating motion of the internal free surface relative to the floater-tube set, produced by the incident waves, makes the air flow through a novel self-rectifying air turbine: the biradial turbine. To reduce the losses of the PTO system at partial load, an electrical generator with a rated power twice the maximum expected average power conversion of the buoy was adopted. The control of the turbine-generator set under highly energetic sea-state conditions was experimentally investigated by means of tests performed in a PTO test rig. In the reported tests, the hydrodynamics of the OWC spar-buoy and the aerodynamics of the air turbine were numerically simulated in real-time and coupled with the experimental model of the turbine/electrical generator set in a hardware-in-the-loop configuration. The experimental results allowed the dynamic behaviour of the PTO to be characterized and provided validation of the proposed control algorithms that ensure operation within safe limits.  相似文献   

11.
文章分析了离岸摆式波浪能装置的工作原理及其适用的环境条件,针对目前海洋石油平台几种主要的基础形式,包括桩基础、重力式基础和桶形基础等,分析研究其特点及其适用的土质条件,并就某一站址海域具体的海洋地质情况进行了分析,提出适用于波浪能装置的海底基础形式,计算基础承载力,为后续的实际应用提供理论支持。  相似文献   

12.
This paper is on a wind energy conversion system simulation of a transient analysis due to a blade pitch control malfunction. The aim of the transient analysis is the study of the behavior of a back-to-back multiple point clamped five-level full-power converter implemented in a wind energy conversion system equipped with a permanent magnet synchronous generator. An alternate current link connects the system to the grid. The drive train is modeled by a three-mass model in order to simulate the dynamic effect of the wind on the tower. The control strategy is based on fractional-order control. Unbalance voltages in the DC-link capacitors are lessen due to the control strategy, balancing the capacitor banks voltages by a selection of the output voltage vectors. Simulation studies are carried out to evaluate not only the system behavior, but also the quality of the energy injected into the electric grid.  相似文献   

13.
运用并联机构型综合理论GF集设计出一种新型的并联海浪发电装置,利用线性微幅波理论和弗汝德-克雷洛夫假定法,建立垂直圆柱形浮体在海浪作用下的动态响应模型,求解出一定海洋环境下浮体的垂荡运动和摆动的规律,并对海浪发电装置机构运动学特性进行分析,求解出用于能量转换的6条并联液压缸的伸缩位移曲线.  相似文献   

14.
The present scenario of energy market is highly volatile due to large oscillation in the fossil fuel prices. During these periods, the high energy demand for the industries is being partially met through non-conventional energy sources such as wind and solar power. The large untapped energy potential in the Ocean is yet to be exploited due to many technological constraints. The recent decades have shown positive developments worldwide towards the ocean wave energy converters. In the present study, an improved wave energy potential estimate has been made. Based on various parameters such as physical site characteristics, environmental conditions and socio-economic regional state, the selection criteria have been suggested. This would form the basis for energy device selection for the decision makers.  相似文献   

15.
The wave energy potential is directly proportional to the wave period and second power of wave height averaged over a suitable time period. The wave height and period have temporal and spatial stochastic variations. It is the main purpose of this paper to derive the most general wave energy formulation by considering simultaneously the temporal variations both in the wave height and period. The correction factor is derived explicitly in terms of cross-correlation and the coefficients of variation. The application of the methodology is performed for wave measurement stations located in the Pacific Ocean off the west coast of the US.  相似文献   

16.
This work introduces the development of a power-electronics customizable energy system for their application on renewable energy generation based on proton-exchange membrane fuel cells. The customizable energy system aims to regulate the output voltage from a fuel cell, which has a relatively low amplitude and wide range of variation, to a fixed voltage to feed a grid-tie inverter. The customizable energy system proposed is based on a dc-dc converter for which different configurations (topologies) are available, such as the traditional single-phase boost or the (interleaved) multi-phase boost. The dc-dc converter of the energy system is based on the series-capacitor boost converter, a recently proposed converter that has a similar configuration to the interleaved boost converter. This article shows that the series-capacitor boost topology offers benefits in the proposed application. An experimental prototype was developed and tested in order to demonstrate the advantages of the system proposed.  相似文献   

17.
The aim of this paper is to present and evaluate a proposal for designing an off-grid offshore electrolysis plant powered by wave energy. This plant includes PEM electrolyzers, a Reverse Osmosis system to produce water with adequate conductivity, a compression unit to store the hydrogen for transport, and batteries for temporary storage of electricity for short-time balances. First, the systems that compose the proposed plant are justified and described. Then a proposal for sizing these subsystems is given, based on using buoy-measured data at the expected location and simple mathematical models of the different sections of the plant. Finally the performance of the plant in a specific location is tested in detailed by using measured data, studying the influence of sizing on the expected performance.  相似文献   

18.
The problem of sizing an electricity storage for a 5000 inhabitants island supplied by both marine renewables (offshore wind and waves) and the mainland grid is addressed by a case study based on a full year resource and consumption data. Generators, transmission lines and battery storage are accounted for through basic simplified models while the focus is put on electricity import/export budget. Self-sufficiency does not seem a reasonable goal to pursue, but partial autonomy provided by renewable sources and a medium size storage would probably be profitable to the island community.  相似文献   

19.
This paper describes the study of the impact of energy absorption by wave farms on the nearshore wave climate and, in special, the influence of the incident wave conditions and the number and position of the wave farms, on the nearshore wave characteristics is studied and discussed. The study was applied to the maritime zone at the West coast off Portugal, namely in front of São Pedro de Moel, where it is foreseen the deployment of offshore wave energy prototypes and farms between the 30 m and 90 m bathymetric lines, with an area of 320 Km2. In this study the REFDIF model was adapted in order to model the energy extraction by wave farms. Three different sinusoidal incident wave conditions were considered. Five different wave farm configurations, varying the position of the wave farm, its number and the width of the navigation channels at each wave farm were analysed. The results for each configuration in terms of the change of the wave characteristics (wave height and wave direction) at the nearshore are presented, compared and discussed for three representative wave conditions.  相似文献   

20.
The variable displacement oil-hydraulic pumps for the Power Take-Off (PTO) of wave energy converters must work above 80% of maximum displacement in order to have an overall efficiency of approximately 94.5%. This is achieved by controlling their rotational speed when the oil-hydraulic power fluctuates in time. Three speed control strategies have been presented, the first fixing the maximum possible speed in each sea state, the second by slowly varying the pump speed between speed peak values and average ones, and the third by working with highly variable speed reference values. The worst pump efficiency is achieved with the first strategy while the best one with the third strategy. However, the first has less impact than the third one in the pump lifecycle. On the other hand, the second strategy is used to make a trade-off between pump efficiency and lifecycle. However, this paper presents a fourth speed control strategy, which is a hybrid of the second and third strategies. So, the objectives of this paper were to know if these strategies are implementable in a test rig and also on a new PTO concept and determining what modifications should be introduced in these PTO strategies and hardware. This paper also contributes with the application of new methodologies in this field of research for the modelling of pump efficiency and pressure control, such as Neuro-Fuzzy modelling and Fuzzy Logic control systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号