首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为提高出水水质的生物稳定性,明确是否应在生物活性炭(BAC)滤池前设置预氧化工艺,比较了预氧化/生物活性炭联用工艺与常规给水处理工艺中AOC的变化规律及对有机物的去除效果.研究发现,常规给水处理工艺对AOC的去除率仅为31.8%,出厂水中高浓度的AOC造成了管网中细菌的再生长.高锰酸钾预氧化与生物活性炭联用工艺对AOC的去除率为67.7%,AOC浓度降至121μg//L,提高了水质的生物稳定性.臭氧预氧化与生物活性炭联用工艺对AOC的去除率为48.3%,低于单独活性炭工艺的;对有机物的去除效果则低于高锰酸钾预氧化/生物活性炭联用工艺的.可见,在生物活性炭前设置高锰酸钾预氧化单元,更有利于去除水中的有机物及保障水质的生物稳定性.  相似文献   

2.
超滤/臭氧氧化工艺对再生水中AOC的去除效果   总被引:1,自引:0,他引:1  
如何控制微生物生长、保障水质生物稳定性,是再生水输配与利用过程中关注的重要问题。可同化有机碳(AOC)是评价水质生物稳定性的重要指标。对北京市某再生水厂超滤/臭氧氧化处理过程中AOC浓度及其分子质量分布特性的变化进行了研究,结果表明:二级出水中的AOC主要为分子质量>10 ku的有机物,超滤对二级出水中有机物的去除效果良好,对AOC的去除率达到73%。臭氧氧化可提高有机物的可生化性,导致AOC浓度升高了48%。在二级出水和超滤出水中,AOC物质以分子质量>10 ku的有机物为主,分别占79%和59%;经臭氧处理后,小分子质量(<1 ku)有机物对AOC的贡献明显上升,所占比例达到74%,同时大分子质量(>10 ku)和中等分子质量(1~10 ku)有机物所占的比例分别下降到22%和3%。  相似文献   

3.
针对南水北调东线水引入胶东供水后水源水中有机碳的变化进行了分析,发现2016年以来水源水中有机碳含量显著升高,平均值在5 mg/L以上,有机碳含量的升高造成水中存在异嗅味、消毒副产物浓度升高、水质生物稳定性变差等问题。为了解目前水厂工艺对生物可同化有机碳(AOC)的去除作用和管网水质的生物稳定性状况,以某水厂为研究对象,分析了2019年2月水厂处理工艺各单元出水中TOC含量、有机碳的分子质量分布和AOC含量。结果表明,水厂处理工艺对TOC的去除率为23. 9%,出厂水中TOC含量较高。水厂原水主要以分子质量<0. 5 ku和3~5 ku的有机碳为主,各工艺段出水中不同分子质量有机碳对总溶解性有机碳的相对贡献变化不大。水厂原水AOC含量为322. 36μg/L,AOC-P17占总AOC的66. 1%,水处理工艺对AOC的总去除率为46. 1%,AOC-P17的去除率高于AOC-NOX的去除率。  相似文献   

4.
臭氧-生物活性炭与单独活性炭工艺处理效果比较   总被引:12,自引:1,他引:12  
为有效去除水中有机物,明确是否应在活性炭前投加臭氧,比较了臭氧-生物活性炭(O3-BAC)和单独活性炭(GAC)过滤对CODMn、UV254和TOC的去除效果以及两套系统对提高水质生物稳定性的作用.研究发现,O3-BAC对CODMn、UV254和TOC的平均去除率比GAC分别高10.3%、11.1%、7.1%,对AOC的去除率>80%,出水AOC浓度为25.9~46.4μg乙酸碳/L,属生物稳定性水质;单独GAC柱对AOC的去除率在40%左右,出水AOC浓度为85.8~117.6μg乙酸碳/L,有时不能满足水质生物稳定性的要求.可见在活性炭前投加臭氧,可以强化活性炭对有机物的去除作用,延长活性炭的使用周期,增强活性炭滤池的生物降解能力.  相似文献   

5.
以AOC评价管网水中异养菌的生长潜力   总被引:7,自引:3,他引:7  
对澳门管网水中异养菌二次生长和水质生物稳定性指标的相关关系的研究结果表明:(1)澳门管网水基本属于生物稳定的饮用水;(2)澳门管网沿途水中可同化有机碳(AOC)和可降解溶解性有机物(BDOC)的变化不明显;(3)降水量和水温对于AOC的季节变化有很大影响,而原水水质、处理工艺和水温则对BDOC的季节变化有很大影响;(4)由于管网水中AOC和异养菌计数(HPC)有明显的相关关系,而BDOC与HPC间无明显的相关关系,故建设将AOC作为评价管网水中异养菌二次生长潜力的首要指标。  相似文献   

6.
近些年的研究表明:当水厂出水中含有一定量的有机物时,细菌将附着于管网管壁生长形成生物膜,导致管网腐蚀和结垢降低管网的输水能力,继而导致二级泵站动力消耗增加,并会导致用户水质恶化,色度和浊度上升;生物膜与管网水中病源微生物会对饮用者的健康造成直接的威胁,即这类出水的生物稳定性较差。目前,国际上大都采用测定AOC(Assimilable organic carbon)即可同化有机碳来判定饮用水的生物稳定性。本文将针对近些年来针对AOC的研究成果进行论述。  相似文献   

7.
微污染源水中的污染物以有机物和氨氮为主,采用传统工艺处理时其出水水质难以达到《生活饮用水卫生标准》(GB 5749—2006)的要求。将沸石作为生物滤池的填料,与混凝沉淀、超滤组合后用于处理微污染地表水,考察了其对污染物的去除效果。结果表明:该组合工艺对氨氮有较好的去除效果,出水氨氮在0.5 mg/L以下,去除率可达90%;对有机物也有较好的去除效果,出水CODMn在2 mg/L左右,去除率约为60%,出水水质达到了《生活饮用水卫生标准》(GB 5749—2006)的要求。该工艺对氨氮的去除主要由沸石生物滤池完成,而沸石生物滤池、混凝沉淀及超滤均能去除CODMn,贡献率分别为49.6%、30.9%、19.5%。  相似文献   

8.
采用中试规模的内压式超滤膜系统处理水厂沉淀池出水,考察超滤膜系统长期运行的出水水质情况。结果表明,超滤膜系统在处理不同水质期沉淀池出水时具有较高的除浊率,平均除浊率达到93.4%,且99.4%的出水浊度<0.1 NTU,去除效果明显优于同期传统的滤池工艺。超滤膜系统对沉淀池出水中有机物的去除效果有限,对CODMn和UV254的平均去除率分别为17.2%和8.2%,出水CODMn≤2.0 mg/L的保证率在98%以上,膜出水CODMn浓度受进水水质和运行条件的影响不大。膜进水中以小分子质量有机物为主,在MW<1 ku区间内的DOC和UV254占到整体有机物含量的57.3%和53.5%。超滤膜系统对微生物的去除效果良好,膜出水水质大部分时间无需经过消毒就能保证卫生要求,可降低后续消毒的加氯量,从而减少消毒副产物的生成量。  相似文献   

9.
构建垂直流/水平潜流/表面流组合人工湿地,考察了该系统对污水中有机物的去除效果,并通过计算有机物去除负荷及去除速率常数来评价系统的除污能力。结果表明,组合人工湿地对有机物的去除效果较好,对COD和BOD5的去除率分别可达到70%和80%以上,出水浓度均可达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)的二级标准。在系统中,垂直流人工湿地对有机物的去除负荷显著高于水平潜流与表面流人工湿地;在水力负荷为0.5 m/d的条件下,系统对有机物的去除能力达到最佳;植物对系统去除有机物效能无显著影响。另外,该系统对有机物具有较高的去除速率常数,对COD和BOD5的去除速率常数分别为238.3、289.3 m/a。  相似文献   

10.
为提高出水水质、保障饮用水安全,探索常规+纳滤复合工艺在微污染水源水处理中的应用,通过中试研究该复合工艺对常规工艺出水水质的提升效果,并对微污染物截留特性进行了综合评价。结果表明,纳滤深度处理工艺可显著提高对DOC、COD_(Mn)、UV_(254)和荧光性有机物的去除效果,同时将出水浊度和颗粒数降至很低的水平。经纳滤处理后,可吸附有机卤化物、可同化有机碳和消毒副产物前驱物的浓度降低了80%以上,大大降低了消毒副产物生成量。经检测,微污染水源水厂滤后水中存在微量的多环芳烃和内分泌干扰物,由于检测出的多环芳烃多以疏水性小分子有机物为主,纳滤截留率仅在50%左右,而内分泌干扰物则以分子质量较大的溶解性有机物为主,大于纳滤膜膜孔,因而截留率可保持在95%以上。纳滤净化出水水质良好,充分保障了出水的化学安全性和生物安全性,因此可作为一种高效的微污染水源水深度处理技术。  相似文献   

11.
以上海市两座不同水源的典型水厂为研究对象,分析了可生物降解有机物(BOM)和总有机物(以DOC表征)在水厂常规净水工艺中的变化规律.结果表明,水厂常规工艺对AOC、BDOC与DOC的去除能力均不高,且受水温影响明显,两水厂出水均为生物不稳定性饮用水;DOC主要在沉淀单元被去除,BDOC在沉淀、砂滤单元都有去除,AOC则主要在砂滤单元被去除;加氯可造成DOC(或BDOC)向AOC的转化,使出厂水AOC浓度增加,要确保出厂水的生物稳定性,必须同步削减水中BOM与总有机物的浓度.  相似文献   

12.
超滤/粉末活性炭组合工艺深度处理黄河源水   总被引:5,自引:4,他引:1  
采用粉末活性炭(PAC)与超滤组合工艺深度处理黄河源水。结果表明,超滤膜对浊度和藻类的去除效果远好于传统滤池,超滤膜出水浊度基本在0.1NTU以下,对叶绿素a的平均去除率达92%;另外超滤膜对细菌的去除效果也较好,出水中检测不到细菌和总大肠菌群。超滤膜对溶解性有机物的去除效果不好,对CODMn和TOC的平均去除率均仅为23%,对UV254则几乎无去除效果;但PAC的投加弥补了超滤膜的这一缺点,使对CODMn、TOC和UV254的平均去除率分别提高至45%、71%和42%,并大幅降低了水中的三卤甲烷生成势。超滤/PAC组合工艺可有效去除水中的污染物,提高饮用水的安全性。  相似文献   

13.
采用好氧/缺氧/好氧(O/A/O)工艺处理焦化废水,重点考察了对有机污染物的去除效果。结果表明,该系统在处理焦化废水的过程中运行稳定,对COD的总去除率可达86%;在系统进水中共检测出25种有机污染物,以酚类、苯系物、多环芳烃为主;经生化处理后,出水中共检测出12种有机物,大多数结构简单的酚类物质被去除,而苯系物及一些分子质量较大的直链、环烷烃类有机物残留下来。  相似文献   

14.
考察了二氧化氯(CIO2)及其组合消毒工艺中溶解性有机物(DOC)浓度和可同化有机碳(AOC)浓度的变化规律。结果表明,以DOC表征的有机物浓度在消毒反应前后变化不大;CIO2的强氧化能力体现在将高分子有机物氧化成中、小分子有机物方面,氧化产物以草酸类物质为主,这导致了AOC浓度的升高,降低了出水的生物稳定性;增加CIO2的投量(〉4mg/L)或与氯胺组合消毒能有效降低出水的AOC浓度,消毒反应24h后出水的AOC浓度均比进水的(59μg/L)低。  相似文献   

15.
超滤膜/混凝生物反应器去除饮用水中有机物的效能   总被引:5,自引:2,他引:3  
采用超滤膜/混凝生物反应器(UF-MCBR)处理模拟微污染源水,考察了对有机污染物的去除效能与机理.结果表明,当聚合氯化铝投加量为10mg/L时,UF-MCBR对DOC、UV254、TOC、CODMn、BDOC和AOC的去除率分别为44.0%、54.5%、49.0%、58.5%、72.8%和58.3%.UF-MCBR通过超滤、生物降解以及混凝三者之间的协同作用去除溶解性有机物,就DOC的去除而言,三种作用的贡献率分别为11.1%、6.2%和26.7%.UF-MCBR系统中的UF膜表面为污泥层所覆盖,该污泥层能有效强化UF膜对分子质量为300-6000u 有机物的截留,UF膜(连同污泥层)对僧水碱、憎水中性物、憎水酸、弱憎水酸和亲水性物质的截留率分别达到了37.0%、42.8%、52.7%、39.8%和19.0%.  相似文献   

16.
主要研究了在新型复合生物系统中活性污泥层对有机物的去除作用,并考察了该系统对高有机负荷、低pH污水和有毒物质的抗受能力。试验结果表明,活性污泥层对有机物的去除发挥了很大的作用,对复杂有机物的去除效果更显著,并且可以提高系统的稳定性。  相似文献   

17.
采用混凝/微滤工艺处理滦河水,以DOC、UV254、THMFP为指标考察了处理前、后水中有机物的分子质量分布.结果表明,原水中的有机物以溶解性小分子有机物为主,该部分有机物是生成THMs的主要物质,其中分子质量为1-3 ku的有机物生成THMs的能力最强;混凝/微滤工艺对分子质量>10 ku的DOC的去除效果较好,在各个分子质量区间,对UV254的去除率均高于对DOC的;系统对THMFP的去除率约为40%.  相似文献   

18.
通过现场调研的方式,分别以太湖水源水及无锡某水厂为对象,在细致分析太湖水源水中含氮有机物基本状况的基础上,探讨了水厂处理工艺对含氮有机物的去除效能。结果表明,太湖水源水中的溶解性有机氮(DON)含量介于0.05~0.4 mg/L之间,且与水中的藻类数量有较好的相关性;水厂常规工艺对DON的去除效果相对较差,去除率为15%~20%;臭氧/生物活性炭工艺对DON不仅没有去除效果,还会有少量的增加,且增加部分主要集中于分子质量为10~100ku的部分;而超滤工艺对分子质量10 ku的DON有较好的去除效果。因此,含氮有机物的控制需要根据原水水质情况进行有针对性的处理。  相似文献   

19.
FCR系统去除餐厅污水有机物和氨氮   总被引:2,自引:0,他引:2  
采用中试规模(7.2 m3/d)的FCR(Food Chain R ing)系统去除餐厅污水中的有机物和氨氮。结果表明,FCR系统处理油脂含量较高的餐厅污水是可行的,当进水COD为1 000~1 200 mg/L、NH3-N为43.2 mg/L、水力停留时间为6 h时,出水COD和NH3-N均值分别为85.4mg/L和7.8 mg/L,对其去除率分别在90%和80%以上,出水水质达到了《污水综合排放标准》(GB 8978—1996)的一级标准。FCR系统的第一段对有机物的去除率为46.06%,减轻了后续三段的负荷,保证了系统对有机物有较好的去除效果。  相似文献   

20.
水处理中,生物处理作为对常规给水处理工艺的强化和补充,能够有效地去除水中某些溶解性有机物、氨氮、硝酸盐氮、亚硝酸盐氮以及铁和锰等污染物.并且提高出水的生物稳定性。生物处理与常规处理工艺相结合,可以大大提高处理效果。饮用水处理中常用的生物处理技术包括:生物塔滤、生物接触氧化、生物流化床以及生物过滤等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号