首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodiesel is a renewable fuel comprised of fatty acid methyl esters (FAME) derived from vegetable oils or animal fats. Comparisons between biodiesel and petroleum-based diesel have shown biodiesel to be effective in reducing exhaust emissions of carbon monoxide, hydrocarbons, particulate matter, and sulfur dioxide. While there are advantages of biodiesel over the traditional petroleum based diesel, biodiesel commercialization is limited by production cost that is dominated by the price of the feedstock (soybean oil). Yellow grease has the potential to be an effective feedstock with lower cost, but the chemical composition of these oils is variable depending on the source of collection and differs from that of virgin oil due to the presence of free fatty acids (FFA). Esterification has been previously demonstrated to reduce the FFA levels of YG; however, large quantities of methanol were required to drive the reaction to high yield. Methanol usage for processing and FFA content are the main factors affecting the economics of FAME production from YG. In this study, the relationship between composition and process variables was systematically studied. The effect of FFA ranging from 2% to 32% (w/w) was studied at three different molar ratios of methanol to FFA (4.5:1, 9:1, 18:1) and was found to have a non-linear relationship. Data obtained from this full factorial screening was used to develop a predictive statistical model to forecast the conversion based on initial FFA level and proportion of alcohol applied for esterification.  相似文献   

2.
Chemical processes of biodiesel production are energy-consuming and generate undesirable by-products such as soaps and polymeric pigments that retard separation of pure methyl or ethyl esters of fatty acids from glycerol and di- and monoacylglycerols. Enzymatic, lipase-catalyzed biodiesel synthesis has no such drawbacks. Comprehension of the latter process and an appreciable progress in production of robust preparations of lipases may soon result in the replacement of chemical catalysts with enzymes in biodiesel synthesis. Engineering of enzymatic biodiesel synthesis processes requires optimization of such factors as: molar ratio of substrates (triacylglycerols: alcohol), temperature, type of organic solvent (if any) and water activity. All of them are correlated with properties of lipase preparation. This paper reports on the interplay between the crucial parameters of the lipase-catalyzed reactions carried out in non-aqueous systems and the yield of biodiesel synthesis.  相似文献   

3.
This research investigated for the first time the synthesis of monk fruit seed (Siraitia grosvenorii)-based solid acid catalyst for biodiesel production. The catalyst was synthesized using a two-step surface functionalization method with trimethoxy phenyl silane and chlorosulfonic acid. The as-synthesized catalyst was characterized to ascertain its catalytic characteristics through surface morphology, chemical bonding, and thermal stability. The effects of activating agent impregnation ratio, carbonization temperature, and sulfonation temperature towards fatty acid methyl ester (FAME) yield were elucidated. The esterification reaction with palmitic acid was found to produce FAME yield up to 98.5% with 4 wt.% catalyst loading, 6-h reaction duration and 120°C reaction temperature. The catalyst also demonstrated high reusability with 84.4% FAME yield being successfully maintained after four successive cycles without reactivation. These proved that the as-synthesized catalyst had high prospect to become a suitable low-cost alternative for biodiesel production through catalytic esterification process in the future.  相似文献   

4.
In this modern era, an increase in urbanization causes the escalating trend of fuel demand as well as environmental pollution problems. Various biofuels research with the respect of climate change and emission reduction recently intensifies, particularly in biodiesel. In Indonesia, diesel oil currently in use contains 20% of biodiesel. Utilizing waste‐based resources such as rendered chicken tallow as the feedstock could be the solution to both energy and environmental challenges. However, chicken tallow contains a significant amount of free fatty acid (FFA) which will obstruct the production yield of biodiesel. In this study, catalyst‐free subcritical methanol has been employed to convert waste chicken tallow (WCT) with high FFA into biodiesel. Design of experiment was conducted to study the effect of temperature, time, and the molar ratio of methanol to fats on the purity and recovery of fatty acid methyl esters (FAMEs). Based on the optimization study performed by response surface methodology (RSM), all three independent variables gave a significant effect on the recovery of FAME. From the experimental results, the maximum FAME yield obtained was 98.43 ± 0.22% with the optimum condition as follows: 167°C, 36.8 minutes, and 42.7:1 (methanol/WCT, mol/mol), while the predicted FAME yield obtained using RSM was 97.76%. The methyl ester composition of WCT‐based biodiesel ranges from C13 to C24.  相似文献   

5.
Review of biodiesel composition, properties, and specifications   总被引:4,自引:0,他引:4  
Biodiesel is a renewable transportation fuel consisting of fatty acid methyl esters (FAME), generally produced by transesterification of vegetable oils and animal fats. In this review, the fatty acid (FA) profiles of 12 common biodiesel feedstocks were summarized. Considerable compositional variability exists across the range of feedstocks. For example, coconut, palm and tallow contain high amounts of saturated FA; while corn, rapeseed, safflower, soy, and sunflower are dominated by unsaturated FA. Much less information is available regarding the FA profiles of algal lipids that could serve as biodiesel feedstocks. However, some algal species contain considerably higher levels of poly-unsaturated FA than is typically found in vegetable oils.Differences in chemical and physical properties among biodiesel fuels can be explained largely by the fuels’ FA profiles. Two features that are especially influential are the size distribution and the degree of unsaturation within the FA structures. For the 12 biodiesel types reviewed here, it was shown that several fuel properties - including viscosity, specific gravity, cetane number, iodine value, and low temperature performance metrics - are highly correlated with the average unsaturation of the FAME profiles. Due to opposing effects of certain FAME structural features, it is not possible to define a single composition that is optimum with respect to all important fuel properties. However, to ensure satisfactory in-use performance with respect to low temperature operability and oxidative stability, biodiesel should contain relatively low concentrations of both long-chain saturated FAME and poly-unsaturated FAME.  相似文献   

6.
Biodiesel produced from oil-rich feedstocks is known as a green replacement for conventional petroleum diesel. Transesterification is the common method used for biodiesel production. Hence, in this contribution, neural network modeling and least square support vector machine (LSSVM) modeling were used to predict the transesterification of castor oil with methanol to form biodiesel. Also, genetic algorithm was used for the optimization of predictive model. Input and output parameter of predictive models for the prediction of biodiesel production yield and estimation of the efficiency of biodiesel production are catalyst weight (C), methanol-to-oil molar ratio (MOR), time (S), temperature (T), and fatty acid methyl ester (FAME) yield, respectively. Proposed LSSVM modeling predicts biodiesel production yield or FAME yield within ±2% relative deviation with a high value of coefficient of determination (0.99583) and a low value of absolute deviation (1.27) in which the mentioned statistical parameters represent the accuracy and robustness of the model.  相似文献   

7.
Biodiesel is a diesel replacement and renewable fuel that is manufactured from vegetable oils, animal fats or waste cooking oils. The production of biodiesel from edible oil is currently much more expensive than hydrocarbon-based fuel, due to the relatively high cost of edible oils. The cost of biodiesel can be reduced by using non-edible oils instead of edible oils. The purpose of the present study was to develop a method of esterification of non-edible oil like rubber seed oil (Hevea brasiliensis). The high free fatty acid content oil reacts quickly with alkaline catalysts to form soap, which prevents the separation of biodiesel and glycerol. A two-step process was used instead of the simple alkaline catalysed transesterification process. It consisted of an acid catalysed pre-processing followed by the usual alkaline catalysed process. The physical and chemical properties of biodiesel were analysed. The quantification of methyl esters were done by high-performance liquid chromatography.  相似文献   

8.
A review on biodiesel production using catalyzed transesterification   总被引:1,自引:0,他引:1  
Biodiesel is a low-emissions diesel substitute fuel made from renewable resources and waste lipid. The most common way to produce biodiesel is through transesterification, especially alkali-catalyzed transesterification. When the raw materials (oils or fats) have a high percentage of free fatty acids or water, the alkali catalyst will react with the free fatty acids to form soaps. The water can hydrolyze the triglycerides into diglycerides and form more free fatty acids. Both of the above reactions are undesirable and reduce the yield of the biodiesel product. In this situation, the acidic materials should be pre-treated to inhibit the saponification reaction. This paper reviews the different approaches of reducing free fatty acids in the raw oil and refinement of crude biodiesel that are adopted in the industry. The main factors affecting the yield of biodiesel, i.e. alcohol quantity, reaction time, reaction temperature and catalyst concentration, are discussed. This paper also described other new processes of biodiesel production. For instance, the Biox co-solvent process converts triglycerides to esters through the selection of inert co-solvents that generates a one-phase oil-rich system. The non-catalytic supercritical methanol process is advantageous in terms of shorter reaction time and lesser purification steps but requires high temperature and pressure. For the in situ biodiesel process, the oilseeds are treated directly with methanol in which the catalyst has been preciously dissolved at ambient temperatures and pressure to perform the transesterification of oils in the oilseeds. This process, however, cannot handle waste cooking oils and animal fats.  相似文献   

9.
Recently interest has been revived in the use of plant-derived waste oils as renewable replacements for fossil diesel fuel. Olive–pomace oil (OPO) extracted from alperujo (by-product of processed olives for olive oil extraction), and produced it in considerable quantities throughout the Mediterranean countries, can be used for biodiesel production. A steam treatment of alperujo is being implemented in OPO extraction industry. This steam treatment improves the solid–liquid separation by centrifugation and facilitates the drying for further extraction of OPO. It has been verified that the steam treatment of this by-product also increases the concentration of OPO in the resulting treated solid, a key factor from an economic point of view. In the present work, crude OPO from steam-treated alperujo was found to be good source for producing biodiesel. Oil enrichment, acidity, biodiesel yield and fatty acid methyl ester composition were evaluated and compared with the results of the untreated samples. Yields and some general physicochemical properties of the quality of biodiesel were also compared to those obtained with other oils commonly used in biodiesel production. As for biodiesel yield no differences were observed. A transesterification process which included two steps was used (acid esterification followed by alkali transesterification). The maximum biodiesel yield was obtained using molar ratio methanol/triglycerides 6:1 in presence of sodium hydroxide at a concentration of 1% (w/w), reaction temperature 60 °C and reaction time 80 min. Under these conditions the process gave yields of about 95%, of the same order as other feedstock using similar production conditions.  相似文献   

10.
The aim of this work was to optimize the production of fatty acid methyl ester (FAME, biodiesel) from wet Nannchloropsis gaditana microalgal biomass by direct enzymatic transesterification. This was done in order to avoid the high cost associated with the prior steps of drying and oil extraction. Saponifiable lipids (SLs) from microalgal biomass were transformed to FAME using the lipase Novozyme 435 (N435) from Candida antarctica as the catalyst, and finally the FAME were extracted with hexane. t-Butanol was used as the reaction medium so as to decrease lipase deactivation and increase mass transfer velocity. A FAME conversion of 99.5% was achieved using wet microalgal biomass homogenized at 140 MPa to enhance cell disruption, a N435:oil mass ratio of 0.32, methanol added in 3 stages to achieve a total of 4.6 cm3 g−1 of oil and 7.1 cm3 g−1 oil of added t-butanol, with a reaction time of 56 h. The FAME conversion decreased to 57% after catalyzing three reactions with the same lipase batch. This work shows the influence of the polar lipids contained in the microalgal biomass both on the reaction velocity and on lipase activity.  相似文献   

11.
The aim of this research is to present the possibilities of the use of non-edible oils in biodiesel production, to consider the various methods for treatment of non-edible oils and to emphasise the influence of the operating and reaction conditions on the process rate and the ester yield. Because of biodegradability and non-toxicity biodiesel has become more attractive as alternative fuel. Biodiesel is produced mainly from vegetable oils by transesterification. For economic and social reasons, edible oils should be replaced by lower-cost and reliable feedstock for biodiesel production, such as non-edible plant oils. In this work biodiesel is produced from neem and Karanja by using butanol, propanol, ethanol and methanol as alcohols and KOH and NaOH as alkali catalysts by the transesterification process. The aim of this research is to analyse the different reaction parameters such as catalyst concentration, type of catalyst, types of alcohol, alcohol to oil molar ratio, reaction time and reaction temperature on the yield of biodiesel from non-edible oils. The maximum yield obtained was 95% with Karanja as oil with methanol and KOH as alkali catalyst at oil to alcohol molar ratio of 6:1 in 1 h at 60°C. Special attention is paid to the possibilities of producing biodiesel from non-edible oils.  相似文献   

12.
Camelina oil is a low-cost feedstock for biodiesel production that has received a great deal of attention in recent years. This paper describes an optimization study on the production of biodiesel from camelina seed oil using alkaline transesterification. The optimization was based on sixteen well-planned orthogonal experiments (OA16 matrix). Four main process conditions in the transesterification reaction for obtaining the maximum biodiesel production yield (i.e. methanol quantity, reaction time, reaction temperature and catalyst concentration) were investigated. It was found that the order of significant factors for biodiesel production is catalyst concentration > reaction time > reaction temperature > methanol to oil ratio. Based on the results of the range analysis and analysis of variance (ANOVA), the maximum biodiesel yield was found at a molar ratio of methanol to oil of 8:1, a reaction time of 70 min, a reaction temperature of 50 °C, and a catalyst concentration of 1 wt.%. The product and FAME yields of biodiesel under optimal conditions reached 95.8% and 98.4%, respectively. The properties of the optimized biodiesel, including density, kinematic viscosity, acid value, etc., were determined and compared with those produced from other oil feedstocks. The optimized biodiesel from camelina oil meets the relevant ASTM D6571 and EN 14214 biodiesel standards and can be used as a qualified fuel for diesel engines.  相似文献   

13.
Surfactant-coated lipase was used as a catalyst in preparing fatty acid methyl ester (FAME) from Chinese tallow kernel oil from Sapium sebiferum (L.) Roxb. syn. Triadica sebifera (L.) small. FAME transesterification was analyzed using response surface methodology to find out the effect of the process variables on the esterification rate and to establish prediction models. Reaction temperature and time were found to be the main factors affecting the esterification rate with the presence of surfactant-coated lipase. Developed prediction models satisfactorily described the esterification rate as a function of reaction temperature, time, dosage of surfactant-coated lipase, ratio of methanol to oil, and water content. The FAME mainly contained fatty acid esters of C16:0, C18:0, C18:1, C18:2, and C18:3, determined by a gas chromatograph. The optimal esterification rate was 93.86%. The optimal conditions for the above esterification ratio were found to be a reaction time of 9.2 h, a reaction temperature of 49 °C, dosage of surfactant-coated lipase of 18.5%, a ratio of methanol to oil of 3:1, and water content of 15.6%. Thus, by using the central composite design, it is possible to determine accurate values of the transesterification parameters where maximum production of FAME occurs using the surfactant-coated lipase as a transesterification catalyst.  相似文献   

14.
This work was to study technical and economic feasibilities of converting residual oils recovered from spent bleaching earth generated at soybean oil refineries into useable biodiesel. Experimental results showed that fatty acids in the SBE residual oil were hexadecenoic acid (58.19%), stearic acid (21.49%) and oleic acid (20.32%), which were similar to those of vegetable oils. The methyl ester conversion via a transesterification process gave a yield between 85 and 90%. The biodiesel qualities were in reasonable agreement with both EN 14214 and ASTM D6751 standards. A preliminary financial analysis showed that the production cost of biodiesel from SBE oils was significantly lower than the pre-tax price of fossil diesel or those made of vegetable oils or waste cooking oils. The effects of the crude oil price and the investment on the production cost and the investment return period were also conducted. The result showed that the investment would return faster at higher crude oil price.  相似文献   

15.
In view of the fast depletion of fossil fuel, the search for alternative fuels has become inevitable, looking at huge demand of diesel for transportation sector, captive power generation and agricultural sector, the biodiesel is being viewed a substitute of diesel. The vegetable oils, fats, grease are the source of feedstocks for the production of biodiesel. Significant work has been reported on the kinetics of transesterification of edible vegetable oils but little work is reported on non-edible oils. Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstocks for biodiesel production in India and limited work is reported on the kinetics of transesterification of high FFA containing oil. The present study reports a review of kinetics of biodiesel production. The paper also reveals the results of kinetics study of two-step acid–base catalyzed transesterification process carried out at pre-determined optimum temperature of 65 and 50 °C for esterification and transesterification process, respectively, under the optimum condition of methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H2SO4 and NaOH and 400 rpm of stirring. The yield of methyl ester (ME) has been used to study the effect of different parameters. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained. This is the first study of its kind dealing with simplified kinetics of two-step acid–base catalyzed transesterification process carried at optimum temperature of both the steps which took about 6 h for complete conversion of TG to ME.  相似文献   

16.
Biodiesel was developed from an unconventional feedstock, i.e. an equivalent blend of castor bean and waste chicken oil through the alkaline-catalyzed transesterification with methanol. The process variables including the alkaline catalyst concentration, methanol to oil molar ratio, reaction temperature, reaction time, and the alkaline catalyst type were investigated. The highest yield of biodiesel (97.20 % ~ 96.98 % w/w ester content) was obtained under optimum conditions of 0.75 % w/w of oil, 8:1 methanol to oil molar ratio, 60°C temperature, and a duration of 30 min. Properties of the produced biodiesel satisfied those specified by the ASTM standards. The results thus indicated that the suggested blend oils are suitable feedstock for the production of biodiesel. The process was found to follow pseudo first-order kinetics, and the activation energy was found to be 8.85 KJ/mole.  相似文献   

17.
Vegetable oils and animal fats in their raw form have high viscosities that makes them unsuitable as fuels for diesel engines. Transesterification is one of the well-known processes by which fats and oils are converted into biodiesel. The reaction often makes use of acid/base catalyst. If the material possesses high free fatty acid then acid catalyst gives better results. In the present investigation, Mahua oil having 14% free fatty acid was transesterifed to obtain biodiesel using acid catalysts with different alcohols. The alcohols used were Methanol, Ethanol and Butanol. The objective of using higher alcohol is to find their effect on ester yield. The process optimization was made based on the maximum ester yield. The results show that transesterification with butanol gives a better yield compared to methanol and ethanol. The transesterification results show that higher catalyst concentration by 6–10% Vol. produces biodiesel with lower viscosity, lower specific gravity with a higher yield (short reaction time of 5 hours). The best process condition with butanol was found to be 6% Vol. of sulfuric acid with 150% excess butanol, which gave an yield of around 95.4% in a reaction time of 5 hours. The prepared biodiesels were tested as per the standard and were found to be satisfactory.  相似文献   

18.
Edible and non-edible oils are used for the production of biodiesel from the last so many years and these oils are extracted from their respective seeds. Jatropha oil is used as a feedstock to produce biodiesel for running the Compression Ignition engine. A statistical model is developed to interrelate the trans-esterification process variables for the biodiesel yield using design of experiment approach by selecting central composite design of a response surface methodology. Results shown in this paper indicate that the optimum observed yield of 95.5% has the following reaction conditions: Molar ratio 19.84 (% v/v), reaction time 3 h, reaction temperature 70°C, catalyst concentration 4.18 wt% and stirrer rpm 650. Also, the yield produced is higher when compared with 93.5% which was observed by Lee paper using the same methodology. Moreover, the fuel properties of Jatropha biodiesel are closer to the ASTM standard of biodiesel.  相似文献   

19.
Biodiesel was synthesized from nonedible oils using a lipase mixture composed of used and discarded Candida rugusa, Candida antactica-B (Novozyme-435), Pseudomonas cepacia, Rhizopus oryzae, and porcine pancreas Type II lipase. To avoid the lipase deactivation stepwise addition of 6 mmol of methanol to 1 mmol of oil lead to 93% biodiesel yield. Addition of 10 wt% of silica gel to the reaction mixture resulted in 97% biodiesel. The lipase mixture was recycled for five times and at the end of the fifth cycle 86% biodiesel was formed.  相似文献   

20.
The thermodynamics of the autothermal reforming (ATR) of biodiesel (FAME) for production of hydrogen is simulated and evaluated using Gibbs free minimization method. Simulations are performed with water-biodiesel molar feed ratios (WBFR) between 3 and 12, and oxygen-biodiesel molar feed ratio (OXBFR) from 0 to 4.8 at reaction temperature between 300 and 800 °C at 1 atm. Yields of H2 and CO are calculated as functions of WBFR, OXBFR and temperature at 1 atm. Hydrogen rich gas can be produced by the ATR of biodiesel for utilization in solid-oxide fuel cells (SOFCs). The best operating conditions for the ATR reformer are WBFR≥9 and OXBFR = 4.8 at 800 °C by optimization of the operating parameters. Yields of hydrogen and carbon monoxide are 68.80% and 91.66% with 54.14% and 39.2% selectivities respectively at the above conditions. The hydrogen yield from biodiesel is higher than from unmodified oils i.e., transesterification increases hydrogen yield. Increase in saturation of the esters, results in increase in methane selectivity, while an increase in unsaturation results in a decrease in methane selectivity. Increase in degree of both saturation and unsaturation of esters, increases coke selectivity. Similarly an increase in the linoleic content of esters, increases coke selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号