首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Sun W  Loeb NG  Videen G  Fu Q 《Applied optics》2004,43(9):1957-1964
Natural particles such as ice crystals in cirrus clouds generally are not pristine but have additional microroughness on their surfaces. A two-dimensional finite-difference time-domain (FDTD) program with a perfectly matched layer absorbing boundary condition is developed to calculate the effect of surface roughness on light scattering by long ice columns. When we use a spatial cell size of 1/120 incident wavelength for ice circular cylinders with size parameters of 6 and 24 at wavelengths of 0.55 and 10.8 microm, respectively, the errors in the FDTD results in the extinction, scattering, and absorption efficiencies are smaller than approximately 0.5%. The errors in the FDTD results in the asymmetry factor are smaller than approximately 0.05%. The errors in the FDTD results in the phase-matrix elements are smaller than approximately 5%. By adding a pseudorandom change as great as 10% of the radius of a cylinder, we calculate the scattering properties of randomly oriented rough-surfaced ice columns. We conclude that, although the effect of small surface roughness on light scattering is negligible, the scattering phase-matrix elements change significantly for particles with large surface roughness. The roughness on the particle surface can make the conventional phase function smooth. The most significant effect of the surface roughness is the decay of polarization of the scattered light.  相似文献   

2.
Baran AJ 《Applied optics》2003,42(15):2811-2818
The scalar optical properties (extinction coefficient, mass extinction coefficient, single-scattering albedo, and asymmetry parameter) of a distribution of randomly oriented ice aggregates are simulated generally to well within 4% accuracy by use of a size-shape distribution of randomly oriented circular ice cylinders at wavelengths in the terrestrial window region. The single-scattering properties of the ice aggregates are calculated over the whole size distribution function by the finite-difference time-domain and improved geometric optics methods. The single-scattering properties of the size-shape distribution of circular ice cylinders are calculated by the T-matrix method supplemented by scattering solutions obtained from complex-angular-momentum theory. Moreover, radiative-transfer studies demonstrate that the maximum error in brightness temperature space when the size-shape distribution of circular ice cylinders is used to represent scattering from ice aggregates is only approximately 0.4 K The methodology presented should find wide applicability in remote sensing of ice cloud and parameterization of cirrus cloud scalar optical properties in climate models.  相似文献   

3.
We investigate the errors associated with the use of circular cylinders as surrogates for hexagonal columns in computing the optical properties of pristine ice crystals at infrared (8-12-microm) wavelengths. The equivalent circular cylinders are specified in terms of volume (V), projected area (A), and volume-to-area ratio that are equal to those of the hexagonal columns. We use the T-matrix method to compute the optical properties of the equivalent circular cylinders. We apply the finite-difference time-domain method to compute the optical properties of hexagonal ice columns smaller than 40 microm. For hexagonal columns larger than 40 microm we employ an improved geometric optics method and a stretched scattering potential technique developed in previous studies to calculate the phase function and the extinction (or absorption) efficiency, respectively. The differences between the results for circular cylinders and hexagonal columns are of the order of a few percent. Thus it is quite reasonable to use a circular cylinder geometry as a surrogate for pristine hexagonal ice columns for scattering calculations at infrared (8-12-microm) wavelengths. Although the pristine ice crystals can be approximated as circular cylinders in scattering calculations at infrared wavelengths, it is shown that optical properties of individual aggregates cannot be well approximated by those of individual finite columns or cylinders.  相似文献   

4.
Geller PE  Tsuei TG  Barber PW 《Applied optics》1985,24(15):2391-2396
The T-matrix method is shown to be an efficient and accurate procedure for calculating the scattering matrix for randomly oriented nonspherical particles. Calculated scattering matrix elements for spheroidal particles are identical to those obtained by the spheroidal harmonic approach. T-matrix calculations for a randomly oriented finite length cylinder agree well with microwave scattering measurements. Analysis of the information content of the angular variation of the matrix elements for a set of moderately sized absorbing spheroidal particles is presented. It is found that the Fourier spectrum of the phase function and a parameter related to the depolarization ratio contain particle size and shape information, respectively.  相似文献   

5.
Baran AJ  Havemann S 《Applied optics》2000,39(30):5560-5568
The applicability of various approximations for computing the absorption efficiency and single-scattering albedo of a randomly oriented hexagonal column is tested versus electromagnetic theory. To calculate the absorption efficiency and single-scattering albedo of the hexagonal column from electromagnetic theory we used a generalization to the separation-of-variables method, which enables continuous calculation of optical properties up to size parameters of 86. We found that the asymptotic absorption efficiency is independent of particle shape, and that, as the size parameter increases, the hexagonal column tends to its asymptotic absorption value more quickly than Mie theory. The asymptotic absorption limit of the hexagonal column is calculated accurately (to within 1%) and rapidly by use of the complex-angular-momentum approximation, indicating that this approximation could be used to calculate the absorption limit of nonspherical particles. The equal-volume sphere best approximates the hexagonal column single-scattering albedo at a strongly absorbing wavelength (e.g., 11.9 mum for an ice particle). However, in the resonance region (e.g., 80 mum for an ice particle) Mie theory fails to approximate the single-scattering albedo of the hexagonal column, but as the size parameter exceeds 10 the error in the sphere approximation reduces to within 2%. At 80-mum wavelength there is a characteristic ripple structure superimposed on the hexagonal column absorption efficiency solutions between size parameters from approximately 1 to 4. The ripple structure is indicative of surface-wave interference and is similar to the sphere but less pronounced on the hexagonal column. We investigated the applicability of ray tracing for calculating the single-scattering albedo at absorbing wavelengths relevant to remote sensing of ice particles in the atmosphere and found it to be within 4% for size parameters between 3 and 42 at 3.7-mum wavelength. At mid-infrared wavelengths (e.g., 8.5 and 11.9 mum) ray tracing is within 5% of electromagnetic theory for size parameters exceeding 10. We also tested the Bryant and Latimer absorption approximation to anomalous diffraction theory by using the separation-of-variables method.  相似文献   

6.
The conventional Lorenz-Mie formalism is extended to the case for a coated sphere embedded in an absorbing medium. The apparent and inherent scattering cross sections of a particle, derived from the far field and near field, respectively, are different if the host medium is absorptive. The effect of absorption within the host medium on the phase-matrix elements associated with polarization depends on the dielectric properties of the scattering particle. For the specific cases of a soot particle coated with a water layer and an ice sphere containing an air bubble, the phase-matrix elements -P12/P11 and P33/P11 are unique if the shell is thin. The radiative transfer equation for a multidisperse particle system embedded within an absorbing medium is discussed. Conventional multiple-scattering computational algorithms can be applied if scaled apparent single-scattering properties are applied.  相似文献   

7.
The single-scattering properties of ice particles in the near- through far-infrared spectral region are computed from a composite method that is based on a combination of the finite-difference time-domain technique, the T-matrix method, an improved geometrical-optics method, and Lorenz-Mie theory. Seven nonspherical ice crystal habits (aggregates, hexagonal solid and hollow columns, hexagonal plates, bullet rosettes, spheroids, and droxtals) are considered. A database of the single-scattering properties for each of these ice particles has been developed at 49 wavelengths between 3 and 100 microm and for particle sizes ranging from 2 to 10,000 microm specified in terms of the particle maximum dimension. The spectral variations of the single-scattering properties are discussed, as well as their dependence on the particle maximum dimension and effective particle size. The comparisons show that the assumption of spherical ice particles in the near-IR through far-IR region is generally not optimal for radiative transfer computation. Furthermore, a parameterization of the bulk optical properties is developed for mid-latitude cirrus clouds based on a set of 21 particle size distributions obtained from various field campaigns.  相似文献   

8.
We use the current advanced version of the T-matrix method to compute the optical cross sections, the asymmetry parameter of the phase function, and the scattering matrix elements of ice spheroids with aspect ratios up to 20 and surface-equivalent-sphere size parameters up to 12. We demonstrate that platelike and needlelike particles with moderate size parameters possess unique scattering properties: their asymmetry parameters and phase functions are similar to those of surface-equivalent spheres, whereas all other elements of the scattering matrix are typical of particles much smaller than the wavelength (Rayleigh scatterers). This result may have important implications for optical particle sizing and remote sensing of the terrestrial and planetary atmospheres.  相似文献   

9.
Xu L  Ding J  Cheng AY 《Applied optics》2002,41(12):2333-2348
Scattering matrix characteristics of polydisperse, randomly oriented, small ice crystals modeled by finite circular cylinders with various ratios of the length to diameter (L/D) ratio are calculated by use of the exact T-matrix approach, with emphasis on the thermal infrared spectral region that extends from the atmospheric short-wave IR window to the far-IR wavelengths to as large as 30 microm. The observed ice crystal size distribution and the well-known power-law distribution are considered. The results of the extensive calculations show that the characteristics of scattering matrix elements of small ice circular cylinders depend strongly on wavelengths and refractive indices, particle size distributions, and the L/D ratios. The applicability of the power-law distribution and particle shapes for light scattering calculations for small ice crystals is discussed. The effects of the effective variance of size distribution on light scattering characteristics are addressed. It seems from the behavior of scattering matrix elements of small ice crystals that the combination of 25 and 3.979 microm has some advantages and potential applications for remote sensing of cirrus and other ice clouds.  相似文献   

10.
采用T矩阵方法计算亚微米级扁椭球随机取向分布颗粒群的散射特性,研究消光截面、散射截面、吸光截面、单散射反照率、非对称因子以及散射矩阵元素与颗粒的大小、折射率、长短轴比之间的关系。结果表明,随颗粒粒径增大,消光截面、散射截面、吸光截面、非对称因子都单调增加,散射相函数F11的角分布曲线特征可以区分颗粒的大小;颗粒越偏离球形,颗粒对入射光的衰减效率越低,后向散射光强越强,在轴比不大时,前向50°内的F22/F11值可以区分颗粒的形状;折射率变化主要是对后向散射光的分布产生影响,实部、虚部的变化可分别通过F34/F11的角分布曲线、F12/F11的第一个峰值来体现。  相似文献   

11.
The purpose of this work is to show that an appropriate multiple T-matrix formalism can be useful in performing qualitative studies of the optical properties of colloidal systems composed of nonspherical objects (despite limitations concerning nonspherical particle packing densities). In this work we have calculated the configuration averages of scattering and absorption cross sections of different clusters of dielectric particles. These clusters are characterized by their refraction index, particle shape, and filling fraction. Computations were performed with the recursive centered T-matrix algorithm (RCTMA), a previously established method for solving the multiple scattering equation of light from finite clusters of isotropic dielectric objects. Comparison of the average optical cross sections between the different systems highlights variations in the scattering and absorption properties due to the electromagnetic interactions, and we demonstrate that the magnitudes of these quantities are clearly modulated by the shape of the primary particles.  相似文献   

12.
We introduce a novel method for determining analyte concentration as a function of depth in a highly scattering media by use of a dual-wavelength optical coherence tomography system. We account for the effect of scattering on the measured attenuation by using a second wavelength that is not absorbed by the sample. We assess the applicability of this technique by measuring the concentration of water in an Intralipid phantom, using a probe wavelength of 1.53 mum and a reference wavelength of 1.31 mum. The results of our study show a strong correlation between the measured absorption and the water content of the sample. The accuracy of the technique, however, was limited by the dominance of scattering over absorption in the turbid media. Thus, although the effects of scattering were minimized, significant errors remained in the calculated absorption values. More-accurate results could be obtained with the use of more powerful superluminescent diodes and a choice of wavelengths at which absorption effects are more significant relative to scattering.  相似文献   

13.
The pseudospectral time-domain (PSTD) method is a powerful approach for computing the single-scattering properties of arbitrarily shaped particles with small-to-moderate-sized parameters. In the PSTD method, the spatial derivative approximation based on the spectral method is more accurate than its counterpart based on the finite-difference technique. Additionally, the PSTD method can substantially diminish accumulated errors that increase with the spatial scale and temporal duration of simulation. We report on the application of the PSTD method to the scattering of light by nonspherical ice particles. The applicability of the PSTD method is validated against the Lorenz-Mie theory and the T-matrix method. The phase functions computed from the PSTD method and the Lorenz-Mie theory agree well for size parameters as large as 80. Furthermore, the PSTD code is also applied to the scattering of light by nonspherical ice crystals, namely, hollow hexagonal columns and aggregates, which are frequently observed in cirrus clouds. The phase functions computed from the PSTD method are compared with the counterparts computed from the finite-difference time-domain (FDTD) method for a size parameter of 20 and an incident wavelength of 3.7 microm. The comparisons show good agreement between the two methods.  相似文献   

14.
We show that the use of a matrix inversion scheme based on a special lower triangular-upper triangular factorization rather than on the standard Gaussian elimination significantly improves the numerical stability of T-matrix computations for nonabsorbing and weakly absorbing nonspherical particles. As a result, the maximum convergent size parameter for particles with small or zero absorption can increase by a factor of several and can exceed 100. We describe an improved scheme for evaluating Clebsch-Gordon coefficients with large quantum numbers, which allowed us to extend the analytical orientational averaging method developed by Mishchenko [J. Opt. Soc. Am. A 8, 871 (1991)] to larger size parameters. Comparisons of T-matrix and geometrical optics computations for large, randomly oriented spheroids and finite circular cylinders show that the applicability range of the ray-tracing approximation depends on the imaginary part of the refractive index and is different for different elements of the scattering matrix.  相似文献   

15.
Finite-aperture wire grid polarizers   总被引:1,自引:0,他引:1  
The transmission characteristics of wire grid polarizers fabricated in finite apertures are investigated by using a three-dimensional finite-difference time-domain formulation. Specifically, the optical transmissivity and extinction ratio are characterized for a wide variety of geometrical parameters including aperture size in both dimensions, conducting wire fill factor, and polarizer thickness. A dispersive material model is used to investigate the performance of polarizers fabricated by using realistic metals at infrared wavelengths. The results indicate that the aperture dimension significantly impacts the polarizer transmission behavior and that the extinction of the unwanted polarization is often limited by depolarizing scattering that is due to the finite aperture size.  相似文献   

16.
Joblin A 《Applied optics》1997,36(34):9050-9057
The contrast of breast disease in an image produced by a time-domain, near-infrared laser, imaging system was calculated by use of a finite-difference method. The contrast was investigated for tumors of different sizes, in a range of positions within the breast, and in a range of breast thicknesses. Contrast is greatest for large tumors that are near the breast surfaces and that are measured at short times of flight. The contrast was shown to increase as the scattering and the absorption properties of the tumor increased. The scattering properties of the tumor were shown to make the biggest contribution to the contrast at short times of flight. Both pointlike and large extended source and detector configurations were investigated. The effect of the system size on the signal-to-noise ratio was investigated.  相似文献   

17.
We present modeled aerosol optical properties (single scattering albedo, asymmetry parameter, and lidar ratio) in two layers with different aerosol loadings and particle sizes, observed during the Southern African Regional Science Initiative 2,000 (SAFARI 2,000) campaign. The optical properties were calculated from aerosol size distributions retrieved from aerosol layer optical thickness spectra, measured using the NASA Ames airborne tracking 14-channel sunphotometer (AATS-14) and the refractive index based on the available information on aerosol chemical composition. The study focuses on sensitivity of modeled optical properties in the 0.3-1.5 microm wavelength range to assumptions regarding the mixing scenario. We considered two models for the mixture of absorbing and nonabsorbing aerosol components commonly used to model optical properties of biomass burning aerosol: a layered sphere with absorbing core and nonabsorbing shell and the Maxwell-Garnett effective medium model. In addition, comparisons of modeled optical properties with the measurements are discussed. We also estimated the radiative effect of the difference in aerosol absorption implied by the large difference between the single scattering albedo values (approximately 0.1 at midvisible wavelengths) obtained from different measurement methods for the case with a high amount of biomass burning particles. For that purpose, the volume fraction of black carbon was varied to obtain a range of single scattering albedo values (0.81-0.91 at lambda=0.50 microm). The difference in absorption resulted in a significant difference in the instantaneous radiative forcing at the surface and the top of the atmosphere (TOA) and can result in a change of the sign of the aerosol forcing at TOA from negative to positive.  相似文献   

18.
Polycrystalline silver halide fibers were thermally treated by a variety of heating and quenching procedures. For each procedure, the recrystallization process and the grain-size distribution were investigated. The absorption and scattering coefficients at 10.6 mum and the infrared transmittance spectra in the 3-20 mum wavelength range were also measured. Treatment at temperatures above 170 degrees C and long time intervals generally lead to an increase in grain size, with a dependent increase in absorption and scattering coefficients at 10.6 mum. Heating only to temperatures below 170 degrees C reduced the absorptive and scattering losses. The Rayleigh-Gans scattering model was utilized to describe the scattering behavior. A model involving cation vacancies localized at charged dislocations or casual divalent impurities is suggested to explain the infrared absorption of the fibers.  相似文献   

19.
We develop a modification of the T-matrix method that allows for fast calculations of scattering properties of particles with irregular shapes. This modification uses the so-called Sh matrices, the elements of which depend on the shape of particles and do not depend on the particle size or optical constants; i.e., the introduction of Sh matrices makes possible the separation of these parameters within the T-matrix algorithm. For a given shape of a scattering object we calculate the Sh matrices only once and then can quickly calculate the T-matrix elements for a number of sizes and refractive indices. This, in particular, can provide rapid particle-size and refractive index averaging in a particle ensemble. This separation is useful for the derivation of an analytical light-scattering solution for Chebyshev particles.  相似文献   

20.
We use the T-matrix method, as described by Mishchenko [Appl. Opt. 32, 4652 (1993)], to compute rigorously light scattering by finite circular cylinders in random orientation. First we discuss numerical aspects of T -matrix computations specific for finite cylinders and present results of benchmark computations for a simple cylinder model. Then we report results of extensive computations for polydisperse, randomly oriented cylinders with a refractive index of 1.53 + 0.008i, diameter-to-length ratios of 1/2, 1/1.4, 1, 1.4, and 2, and effective size parameters ranging from 0 to 25. These computations parallel our recent study of light scattering by polydisperse, randomly oriented spheroids and are used to compare scattering properties of the two classes of simple convex particles. Despite the significant difference in shape between the two particle types (entirely smooth surface for spheroids and sharp rectangular edges for cylinders), the comparison shows rather small differences in the integral photometric characteristics (total optical cross sections, single-scattering albedo, and asymmetry parameter of the phase function) and the phase function. The general patterns of the other elements of the scattering matrix for cylinders and aspect-ratio-equivalent spheroids are also qualitatively similar, although noticeable quantitative differences can be found in some particular cases. In general, cylinders demonstrate much less shape dependence of the elements of the scattering matrix than do spheroids. Our computations show that, like spheroids and bispheres, cylinders with surface-equivalent radii smaller than a wavelength can strongly depolarize backscattered light, thus suggesting that backscattering depolarization for nonspherical particles cannot be universally explained by using only geometric-optics considerations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号