首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
江涌 《轴承》2005,(7):31-33
针对滚动轴承故障振动信号的特点,构造余弦调频小波,采用连续小波变换的方法来提取滚动轴承故障振动信号的特征,提出了一种滚动轴承故障诊断方法—小波能量谱比较法。通过对有缺陷的滚动轴承振动信号的分析,检测到轴承故障的存在,且能有效地识别出滚动轴承的故障模式。  相似文献   

2.
基于小波包能量与峭度谱的滚动轴承故障诊断   总被引:1,自引:0,他引:1  
针对故障轴承的振动信号中包含冲击成分,导致信号的能量集中的问题,提出了一种基于小波包能量与峭度谱相结合的方法用以提取轴承故障信号特征.首先应用小波包对测量信号进行分解、能量归一化处理和信号重构,然后将重构信号采用峭度谱确定带通滤波器的最佳中心频率和带宽,最后将滤波信号进行包络解调并提取故障特征频率.分别对仿真信号和试验...  相似文献   

3.
基于小波包能量谱齿轮振动信号的分析与故障诊断   总被引:5,自引:0,他引:5  
小波包是继小波分析之后提出的一种新型的多尺度分析方法,解决了小波分析在高频部分分辨率差的缺点,体现了比小波分析更好的处理效果.测试了齿轮传动系统在几种不同故障类型下的振动信号,利用小波包变换的分解和重构算法,有效地提取出齿轮故障特征信号,得到试验结果.通过比较时域分析、频域分析和小波包分析对齿轮振动信号进行的特征提取,...  相似文献   

4.
小波变换在滚动轴承故障诊断中的应用   总被引:42,自引:2,他引:42  
采用小波包分解和信号重构的方法,提取滚动轴承振动信号中被噪声所掩盖的由滚动表面剥落磨损所引起的冲击成分,并且加以分析。通过对滚动轴承出现内圈剥落、外圈剥落和正常情况下振动信号的分析,说明了这种方法可以有效地用于滚动轴承的故障诊断。  相似文献   

5.
用小波包方法构造滚动轴承状态信号的能量特征向量,通过模糊聚类方法对滚动轴承状态进行分类,只需少量的样本数据就能获得较好的分类效果,实用性较强。试验证明了该方法的有效性。  相似文献   

6.
连续小波变换在滚动轴承故障诊断中的应用   总被引:9,自引:0,他引:9  
针对滚动轴承故障振动信号的特点,构造脉冲响应小波,采用连续小波变换的方法来提取滚动轴承故障振动信号的特征,在此基础上提出了两种滚动轴承故障诊断方法:尺度——小波能量谱比较法和时间——小波能量谱自相关分析法。通过对滚动轴承外圈和内圈故障振动信号的分析,说明两种方法不仅能检测到滚动轴承故障的存在,而且能有效识别滚动轴承的故障模式,从而为滚动轴承故障诊断提供了一种新途径。  相似文献   

7.
给出了一种新的滚动轴承故障诊断方法,将小波包和EMD方法、AR模型法相结合,实测信号分析表明,此方法不但正确检测到了轴承的状态,而且优于EMD和AR模型法.  相似文献   

8.
针对单一的信号处理诊断方法难以实现滚动轴承故障准确诊断的局限性,提出一种基于小波包能量神经网络相融合的滚动轴承诊断方法。搭建MPS-ICP滚动轴承振动信号的数据采集平台,利用小波包变换对滚动轴承内环、外环及滚动体的故障信号进行去噪、分解与重构,有效提取不同故障下各频段能量的故障特征。将提取的能量故障特征分别输入至建立的BP、RBF和Elman神经网络的诊断系统中,实验分析表明,三种神经网络都能较好的诊断电机滚动轴承的故障类型,且与实际滚动轴承的故障类型较吻合,但就诊断误差和时间综合而言,BP神经网络诊断系统更适合电机滚动轴承故障的检测。  相似文献   

9.
针对转静碰摩故障的振动响应问题,采用小波基函数db6三层小波包分解和能量谱相结合的分析方法,对实测的碰摩故障信号进行频带能量特征提取。通过对仿真和实测信号进行小波包分解后作频谱分析发现:当转子发生转静碰摩故障时,频谱图中除了转子的工频外,在分频、分频倍频处引起比较稳定的分数谐波,并出现了3x等高阶倍频频率成分。在对实测信号作进一步能量谱分析时,存在碰摩特征频率的频段能量发生了变化,因此小波包能量谱分析方法能够很好地区分转子的碰摩故障。  相似文献   

10.
《机械强度》2017,(4):773-780
针对滚动轴承早期故障特征信息难以识别以及从小波包分解后的频带不能有效确定并自适应提取共振带的问题,提出了频带幅值熵的概念。在此基础上,将小波包变换和Teager能量谱结合,提出了基于小波包变换自适应Teager能量谱的早期故障诊断方法。该方法首先利用小波包对采集到的振动信号进行分解,并计算各子带的频带幅值熵。然后将熵值按升序排列后依次作为阈值,提取频带幅值熵大于阈值的子带,依据峭度指标确定最佳熵阈值以及小波包最佳分解层数,从而自适应并且有效地提取出共振带。最后对共振带进行Teager能量谱分析,即可从中准确地识别出轴承的故障特征频率。通过信号仿真与实验数据分析验证了该方法的有效性。  相似文献   

11.
针对滚动轴承的故障诊断,分析滚动轴承故障机理及特点,提出基于小波包分析的滚动轴承振动信号的特征向量提取算法,并建立PSO-Elman神经网络进行故障诊断和识别。将滚动轴承故障振动信号进行小波包分解,构造频带能量谱作为特征向量,输入PSO-Elman神经网络对故障进行识别。试验结果表明,基于小波包分析和PSO-Elman神经网络相结合的方法可准确地实现滚动轴承的故障诊断。  相似文献   

12.
基于小波包和SOM神经网络的车辆滚动轴承故障诊断   总被引:1,自引:0,他引:1  
以车辆滚动轴承故障诊断模型为基础,针对其轴承的特点,提出了一种小波包分析和SOM神经网络相结合的故障诊断方法。将该方法应用于车辆滚动轴承的故障诊断中,经过大量实测数据的分析与验证,能够有效地诊断出轴承的故障类型,为旋转机械的动态监测和故障诊断提供了新的参考,具有重要的理论和实际工程应用价值。  相似文献   

13.
针对平稳自回归模型无法准确描述滚动轴承振动信号的非平稳性,提出一种结合小波包分解与自回归模型的故障特征提取方法,以提取能准确反映轴承运行状态的特征向量。首先,通过小波包变换对滚动轴承运行时产生的非平稳振动信号进行分解,得到一系列刻画原始信号特征的系数;然后,利用自相关算法对各系数建立自回归模型,并将自回归模型的参数作为特征向量;最后,采用支持向量机分类器对提取的特征向量进行故障分类,从而实现滚动轴承的智能故障诊断。仿真结果表明该方法的有效性。  相似文献   

14.
基于小波包样本熵的滚动轴承故障特征提取   总被引:5,自引:0,他引:5  
将样本熵引入故障诊断领域,讨论了样本熵的性能和计算参数的选择.结合小波包分解和样本熵,提出了一种新的滚动轴承故障特征提取方法.首先对轴承振动信号进行小波包分解;然后对归一化能量最大的子带进行重构,计算重构信号的样本熵;最后通过样本熵评价故障状态.滚动轴承故障诊断实例验证了该方法的有效性.  相似文献   

15.
采用小波变换能够快速有效地对滚动轴承振动信号进行带通滤波。通过选用多尺度的小波变换,能较好地分离出所要分析的高频固有振动信号,然后对高频振动信号进行包络分析,从包络谱图中提取故障特征频率分量,就能诊断出滚动轴承故障发生在哪个元件上。实验结果表明,这种诊断方法是有效的。  相似文献   

16.
小波包分析在轴承早期故障诊断中的应用   总被引:2,自引:3,他引:2  
为了识别轴承早期损伤引起的故障信号,利用小波包对轴承的振动信号进行处理。小波包分析的实质是对小波分解的结果作进一步细分,因而具有比小波分解高得多的频域分辨能力。文中用小波包分析了两个存在早期轻微损伤的轴承的振动信号,并比较了自然序、Gray序以及移频算法的处理结果。这些分析结果表明,小波包分析能够有效地将隐藏在正常振动信号之中的早期弱故障信号提取出来,从而发现轴承的早期损伤。  相似文献   

17.
基于故障轴承的特征提取,提出一种基于小波包与径向基RBF神经网络相结合的故障诊断方法,克服了以往常用诊断方法中的小波BP神经网络网络收敛慢、训练时间长、而且常常陷入局部极小点的缺点。采用小波滤波技术对采集到的滚动轴承振动信号进行滤波处理,利用小波包分解获得滚动轴承振动信号的特征向量作为故障样本对RBF网络进行训练,进行了详细的故障诊断试验研究。实验结果表明训练好的RBF网络能够很好地诊断出轴承故障类型,故本方法在旋转机械故障诊断方面具有良好的应用价值。  相似文献   

18.
为解决滚动轴承振动信号信噪比低和故障分类准确性不高的问题,提出了小波包最优熵和相关向量机相结合的故障诊断方法。首先采用小波包对采集到的信号进行信噪分离,寻找分解后信号的最优小波包节点熵;然后提取最优节点能量作为训练样本,对相关向量机的多故障分类器进行训练,实现轴承的智能诊断。试验表明,该方法可简单有效地分离噪声,并具有良好的分类能力,可以很好地应用于轴承故障诊断。  相似文献   

19.
小波包络分析在滚动轴承诊断中的应用   总被引:25,自引:0,他引:25  
史东锋  鲍明  屈梁生 《中国机械工程》2000,11(12):1382-1385
针对传统包络解调分析方法需要人为选定共振频带的缺陷,提出了基于高斯函数的小波包络解调分析方法。该方法能将各共振响应频带的调制频率提取出来。进一步采用包络谱熵选择最优尺度来监测滚动轴承缺陷的发生和发展过程。经实例验证,该方法能准确地检测出滚动轴承外圈、内圈及滚珠的局部缺陷。  相似文献   

20.
基于多尺度Hermitian小波包络谱的轴承故障诊断   总被引:1,自引:0,他引:1  
提出了一种基于多尺度Hermitian小波包络谱的轴承故障诊断方法。该方法综合利用了Hermitian小波和包络谱分析技术的优点,首先对轴承故障振动信号进行Hermitian连续小波变换,得到小波分解的实部和虚部,然后计算振动信号的多尺度包络谱。对齿轮箱轴承故障振动信号的分析表明,该方法在强噪声环境下能有效识别轴承内圈故障和外圈故障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号