共查询到20条相似文献,搜索用时 62 毫秒
1.
针对滚动轴承故障振动信号的特点,构造余弦调频小波,采用连续小波变换的方法来提取滚动轴承故障振动信号的特征,提出了一种滚动轴承故障诊断方法—小波能量谱比较法。通过对有缺陷的滚动轴承振动信号的分析,检测到轴承故障的存在,且能有效地识别出滚动轴承的故障模式。 相似文献
2.
3.
基于小波包能量谱齿轮振动信号的分析与故障诊断 总被引:5,自引:0,他引:5
小波包是继小波分析之后提出的一种新型的多尺度分析方法,解决了小波分析在高频部分分辨率差的缺点,体现了比小波分析更好的处理效果.测试了齿轮传动系统在几种不同故障类型下的振动信号,利用小波包变换的分解和重构算法,有效地提取出齿轮故障特征信号,得到试验结果.通过比较时域分析、频域分析和小波包分析对齿轮振动信号进行的特征提取,... 相似文献
4.
小波变换在滚动轴承故障诊断中的应用 总被引:42,自引:2,他引:42
采用小波包分解和信号重构的方法,提取滚动轴承振动信号中被噪声所掩盖的由滚动表面剥落磨损所引起的冲击成分,并且加以分析。通过对滚动轴承出现内圈剥落、外圈剥落和正常情况下振动信号的分析,说明了这种方法可以有效地用于滚动轴承的故障诊断。 相似文献
5.
用小波包方法构造滚动轴承状态信号的能量特征向量,通过模糊聚类方法对滚动轴承状态进行分类,只需少量的样本数据就能获得较好的分类效果,实用性较强。试验证明了该方法的有效性。 相似文献
6.
7.
给出了一种新的滚动轴承故障诊断方法,将小波包和EMD方法、AR模型法相结合,实测信号分析表明,此方法不但正确检测到了轴承的状态,而且优于EMD和AR模型法. 相似文献
8.
针对单一的信号处理诊断方法难以实现滚动轴承故障准确诊断的局限性,提出一种基于小波包能量神经网络相融合的滚动轴承诊断方法。搭建MPS-ICP滚动轴承振动信号的数据采集平台,利用小波包变换对滚动轴承内环、外环及滚动体的故障信号进行去噪、分解与重构,有效提取不同故障下各频段能量的故障特征。将提取的能量故障特征分别输入至建立的BP、RBF和Elman神经网络的诊断系统中,实验分析表明,三种神经网络都能较好的诊断电机滚动轴承的故障类型,且与实际滚动轴承的故障类型较吻合,但就诊断误差和时间综合而言,BP神经网络诊断系统更适合电机滚动轴承故障的检测。 相似文献
9.
10.
《机械强度》2017,(4):773-780
针对滚动轴承早期故障特征信息难以识别以及从小波包分解后的频带不能有效确定并自适应提取共振带的问题,提出了频带幅值熵的概念。在此基础上,将小波包变换和Teager能量谱结合,提出了基于小波包变换自适应Teager能量谱的早期故障诊断方法。该方法首先利用小波包对采集到的振动信号进行分解,并计算各子带的频带幅值熵。然后将熵值按升序排列后依次作为阈值,提取频带幅值熵大于阈值的子带,依据峭度指标确定最佳熵阈值以及小波包最佳分解层数,从而自适应并且有效地提取出共振带。最后对共振带进行Teager能量谱分析,即可从中准确地识别出轴承的故障特征频率。通过信号仿真与实验数据分析验证了该方法的有效性。 相似文献
11.
12.
基于小波包和SOM神经网络的车辆滚动轴承故障诊断 总被引:1,自引:0,他引:1
以车辆滚动轴承故障诊断模型为基础,针对其轴承的特点,提出了一种小波包分析和SOM神经网络相结合的故障诊断方法。将该方法应用于车辆滚动轴承的故障诊断中,经过大量实测数据的分析与验证,能够有效地诊断出轴承的故障类型,为旋转机械的动态监测和故障诊断提供了新的参考,具有重要的理论和实际工程应用价值。 相似文献
13.
针对平稳自回归模型无法准确描述滚动轴承振动信号的非平稳性,提出一种结合小波包分解与自回归模型的故障特征提取方法,以提取能准确反映轴承运行状态的特征向量。首先,通过小波包变换对滚动轴承运行时产生的非平稳振动信号进行分解,得到一系列刻画原始信号特征的系数;然后,利用自相关算法对各系数建立自回归模型,并将自回归模型的参数作为特征向量;最后,采用支持向量机分类器对提取的特征向量进行故障分类,从而实现滚动轴承的智能故障诊断。仿真结果表明该方法的有效性。 相似文献
14.
基于小波包样本熵的滚动轴承故障特征提取 总被引:5,自引:0,他引:5
将样本熵引入故障诊断领域,讨论了样本熵的性能和计算参数的选择.结合小波包分解和样本熵,提出了一种新的滚动轴承故障特征提取方法.首先对轴承振动信号进行小波包分解;然后对归一化能量最大的子带进行重构,计算重构信号的样本熵;最后通过样本熵评价故障状态.滚动轴承故障诊断实例验证了该方法的有效性. 相似文献
15.
16.
小波包分析在轴承早期故障诊断中的应用 总被引:2,自引:3,他引:2
为了识别轴承早期损伤引起的故障信号,利用小波包对轴承的振动信号进行处理。小波包分析的实质是对小波分解的结果作进一步细分,因而具有比小波分解高得多的频域分辨能力。文中用小波包分析了两个存在早期轻微损伤的轴承的振动信号,并比较了自然序、Gray序以及移频算法的处理结果。这些分析结果表明,小波包分析能够有效地将隐藏在正常振动信号之中的早期弱故障信号提取出来,从而发现轴承的早期损伤。 相似文献
17.
18.
19.
20.
基于多尺度Hermitian小波包络谱的轴承故障诊断 总被引:1,自引:0,他引:1
提出了一种基于多尺度Hermitian小波包络谱的轴承故障诊断方法。该方法综合利用了Hermitian小波和包络谱分析技术的优点,首先对轴承故障振动信号进行Hermitian连续小波变换,得到小波分解的实部和虚部,然后计算振动信号的多尺度包络谱。对齿轮箱轴承故障振动信号的分析表明,该方法在强噪声环境下能有效识别轴承内圈故障和外圈故障。 相似文献