首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spray pyrolysis has been used to produce X-ray amorphous precursors with the nominal composition SrFe12O19 · 6SrB2O4 in the form of spherical particles 0.3 to 2 μm in diameter. Heat treatment of the precursors at temperatures from 650 to 900°C has produced platelike strontium hexaferrite particles embedded in a SrB2O4 matrix. With increasing annealing temperature, the average dimensions of the hexaferrite particles increase from 80 × 20 to 450 × 100 nm and the coercivity of the material rises from 240 to 440 kA/m.  相似文献   

2.
Hard magnetic SrFe12O19 (SrFe) nanostructures were synthesized by a facile chemical precipitation procedure. The influence of temperature, concentration and different capping agents on the particle size and morphology of the magnetic nanoparticles was investigated. The synthesized ferrites were characterized by X-ray diffraction pattern, scanning electron microscope, and Fourier transform infrared spectroscopy. Ferromagnetic property of the hexaferrite nanostructures was determined by vibrating sample magnetometer. The results show hard magnetic ferrite with a high coercivity about 2800–4000 Oe and saturation magnetization around 11–14 emu/g were synthesized.  相似文献   

3.
The SrFe12O19/SiO2/TiO2 nanostructures with hard magnetic core were successfully synthesized through the facile and efficient wet chemical processes. At first, nanocrystalline strontium hexaferrite (SrFe12O19) powder was prepared using a new co-precipitation route in ethanol/water media. In the next step, SrFe12O19/SiO2 composites were produced by well-known Stöber method using tetraethyl orthosilicate as precursor. Finally titania was coated on SrFe12O19/SiO2 composite particles using titanium n-butoxide precursor. The core/shell/shell nanostructures have been characterized by means of X-ray diffraction, vibrating sample magnetometer, Fourier transform infrared spectra, field emission scanning electron microscopy, and transmission electron microscopy equipped with an energy-dispersive X-ray spectroscopy detector. The catalytic activity of SrFe12O19/SiO2/TiO2 composites has been investigated in the degradation of methylene blue dye under UV illumination. The results indicated that the obtained SrFe12O19/SiO2/TiO2 composite has photo-catalytic properties and can be retrieved by magnetic separation. The photo-degradation of methylene blue dye was about 80% in the presence of photo-catalyst powder at irradiation time of 180 min. Recycled composite particles could be used again.  相似文献   

4.
The nanocrystalline SrFe12 O 19 materials were prepared by a sol-gel auto-combustion method using different fuels such as citric acid, dextrose, aniline, and hexamine. The combustion product obtained from all the fuels except from that of aniline show a single phase of SrFe12 O 19 materials upon annealing at 1000 °C/2 h. The combustion product obtained from aniline as fuel shows SrFe12 O 19 as the main phase with α-Fe2 O 3 as impurity. No notable change in lattice parameters is observed due to variation in fuels for SrFe12 O 19 materials. With a little change in the NIR relative reflectance (72–85 %) on fuels, the different SrFe12 O 19 materials display high NIR reflectance in the wavelength range, 1500–2500 nm. The photoluminescence emission spectra of SrFe12 O 19 materials reveal a broad emission peak at ~350 nm which is reminiscent to the Ba-based hexaferrite, BaFe12 O 19. The FESEM images expose quite dissimilar morphology for the various fuels used in the synthesis of SrFe12 O 19 materials. Hysteresis loops for all the nanocrystalline SrFe12 O 19 materials observed under the applied field of ±1.5 T at room temperature exhibit hard ferromagnetic property. The SrFe12 O 19 materials produced from glycine and aniline as fuels exhibit highest and lowest M s values of 61.3 and 50.5 emu/g, respectively.  相似文献   

5.
In this work, various morphologies of SrFe12O19 (SrFe) nanostructures were synthesized via a simple sol–gel method. The effect of concentration, temperature and various surfactants on the morphology and particle size of the magnetic seeds was investigated. The prepared magnetic products were characterized by X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy techniques. Alternating gradient force magnetometry reveals that the samples exhibit hard magnetic property with the coercivity up to 5300 Oe. Strontium ferrite was added to poly vinyl alcohol to prepare the magnetic polymeric matrix thin film nanocomposites. The saturation magnetization and coercivity decreased due to agglomeration of magnetic nanoparticles in polymer matrix.  相似文献   

6.
The strontium hexaferrite (SrFe12O19) nanoparticles have been successfully synthesized by co-precipitation route. The effect of various parameters such as calcination temperature and chelating agents were screened to achieve optimum condition. Different chelating agents such as amino acids (proline, alanine, aspartic acid) and surfactants (SDBS, PVP, and EDTA) were used. Compared with the amino acids, the surfactants increase the particle size and the best result was observed for alanine. The SrFe12O19 nanoparticles showed enhanced photocatalytic activity in the degradation of methyl orange under visible light irradiation (λ?>?400 nm). The degradation rates of the methyl orange were measured to be as high as 95% in 220 min. The nanoparticles were also characterized by several techniques including FT-IR, XRD, SEM, and VSM. The VSM measurement showed a saturation magnetization value (Ms) of 32 emu/g. The SEM images proposed that the particles are almost spherical with an average particle size of 90 nm.  相似文献   

7.
Al-substituted M-type hexaferrite is a highly anisotropic ferromagnetic material. In the present study, the coprecipitation and the citric-combustion methods of synthesis for SrAl4Fe8O19 powders were explored and their microstructure, magnetic properties, and microwave absorptivity examined. X-ray diffraction (XRD), scanning electron microscopy (SEM), a vibrating sample magnetometer, and a vector network analyser were used to characterize the powders. The XRD analyses indicated that the pure SrAl4Fe8O19 powder was synthesized at 900°C and 1000°C for 3 h by coprecipitation, but only at 1000°C for the citric-combustion processes. The SEM analysis revealed that the coprecipitation process yielded a powder with a smaller particle size, near single-domain structure, uniform grain morphology, and smaller shape anisotropy than the citric-combustion process. The synthesis technique also significantly affected the magnetic properties and microwave-absorptivity. Conversely, calcining temperature and calcining time had less of an effect. The grain size was found to be a key factor affecting the property of the powder. The powders synthesized by coprecipitation method at calcining temperature of 900°C exhibited the largest magnetization, largest coercivity, and best microwave absorptivity.  相似文献   

8.
Al-substituted barium hexaferrite particles have been successfully synthesized via sol-gel auto combustion method in the presence of citric acid as fuel. Thermal decomposition, phase evolution, and the microstructure of products were characterized by DTA/TG, XRD, and SEM. Magnetic measurements were carried out on a VSM. To investigate the effects of citric acid to metal nitrate (CA/MN) molar ratios and combustion temperatures on the morphology, phase structure, and magnetic properties of products and finding the optimal condition, several experiments were carried out. The results revealed that the formation temperature, crystallite size as well as magnetic properties are significantly influenced by these parameters. A saturation magnetization of 56.96 emu/g and a coercivity of 7279 Oe were obtained in BaAlFe11O19 powders with CA/MN = 1.0. High Ms and Hc values make them particularly suitable for hard magnetic applications.  相似文献   

9.
Single-phase barium Strontium hexaferrite (Ba0.5Sr0.5Fe12O19—BSF) was synthesized by sol–gel method using metal nitrates as source and d-Fructose as a fuel. The phase formation, surface morphology and magnetic properties of the samples were analyzed by X-ray Diffraction, High-resolution Scanning Electron Microscope (HR-SEM) and Vibrating Sample Magnetometer (VSM). X-ray analysis indicates that the sintered samples were remained in hexagonal structure. The densities of the sintered samples at 1,150 °C were found to be 93% of theoretical density. HR-SEM and VSM studies reveal that the sintered samples were resulted in hexagonal structure with good magnetic properties. The average diagonal of the grains varies from 0.95 to 1.7 μm. The thermal treatment effects the growth of the hexagonal grains of ferrites.  相似文献   

10.
The hexaferrite BaFe12 O 19 phase was synthesized through the mechanical alloying process followed by subsequent annealing. Rietveld refinements of as-milled powder annealed at 700 °C confirm the formation of the BaFe12 O 19 phase with the presence of an important amount of the α-Fe2 O 3 phase. Thus, prior mechanical milling shows much lower reaction temperature and less reaction time compared to conventional methods. Further annealing up to 900 and 1100 °C could not enable the formation of a single BaFe12 O 19 phase, reaching an optimum phase composition ratio close to BaFe12 O 19/ α-Fe2 O 3 70/30. The crystallite size was found to be in the nanoscale level but increases with increasing temperature (BaFe12 O 19 = 20–62 nm; α-Fe2 O 3 = 31–74 nm). SEM micrographs show that as the annealing temperature rises, the particles become more regular with sharp edges and hexagonal-like shapes. Magnetic measurements reveal that both M s and M r increase with annealing temperature to reach maximum values at 900 °C then remain unchanged, associated with phase composition. The coercivity H c increases upon annealing up to 700 °C to a much higher value, from 1.7 kOe for as-milled powder to 4.8 kOe. Its value then decreases, attributed to grain (particle) growth (formation of larger particles) due to high annealing temperatures: 900–1100 °C. The obtained composites show very interesting magnetic properties and can be considered for potential applications, such as hyperthermia, heavy metal and dye removal, and hard/soft magnetic composites.  相似文献   

11.
Magnetically separable TiO2-coated SrFe12O19 electrospun nanofibers were obtained successfully by means of sol–gel, electrospinning, and coating technology, followed by heat treatment at 550–650 °C for 3 h. The average diameter of the electrospun fibers was 500–600 nm. The fibers were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM). The optimized calcining temperature was determined by XRD and the analysis of decolorizing efficiency of methylene blue (MB) under UV–vis irradiation. The photocatalytic activity of the TiO2-coated SrFe12O19 fibers was investigated using ultraviolet–visible absorbance by following the photooxidative decomposition of a model pollutant dye solution, MB in a photochemical reactor. In contrast to pure TiO2 fibers, the TiO2-coated SrFe12O19 fibers have higher absorption in 250–750 nm wavelength regions. The presence of SrFe12O19 not only broadened the response region of visible-light, but also enhanced the absorbance for UV light. The decolorizing efficiency of MB under UV–vis irradiation was up to 98.19%, which was a little higher than that of Degussa P25 (97.68%). Furthermore, these fibers could be recollected easily with a magnet in a photocatalytic process and had effectively avoided secondary pollution of treated water.  相似文献   

12.
The effect of CuO and B2O3 co-doping on the sintering behavior, microstructure and microwave dielectric properties of tungsten bronze type Ba4Nd9.3Ti18O54 (BNT) ceramics has been investigated by means of a traditional solid-state mixed oxide route. On the one hand, it was indicated that the mixture of CuO and B2O3 is an effective sintering aid for BNT matrix compositions owing to the existence of a low-temperature eutectic reaction. On the other hand, it was found that the addition of CuO and B2O3 has an obvious effect on microwave dielectric properties of BNT ceramics, depending on the amount of sintering aids, the sample density and microstructure. The liquid phases from sintering aids can promote densification, but simultaneously induce grain growth which tends to decrease the sintering driving force. BNT ceramics doped with 3 wt% CuO–B2O3 mixture can be well sintered at 950°C for 4 h and still exhibit relatively good microwave dielectric properties.  相似文献   

13.
The microstructure and electrical properties of ZnO-Bi2O3-based varistor ceramics doped by Pr6O11 in the content range of 0–5.49 wt% were investigated at different sintering temperatures (1,100, 1,150, 1,175, 1,200 °C). The increase of sintering temperature leads to more dense ceramics, which increases the nonlinear property, whereas it decreases the voltage-gradient and leakage current. With increasing Pr6O11 content, the breakdown voltage increases because of the decreases of ZnO grain size. The improvement of non linear coefficient together with the decrease of leakage current are related to the uniformly distribution of secondary phases along the grain boundaries of the ZnO. The varistors sintered at 1,175 °C with the 3.37 wt% Pr6O11 doping possess the best electrical properties: the varistor voltage, nonlinear coefficient, and leakage current are 340 V/mm, 46 and 0.63 μA, respectively.  相似文献   

14.
In this work, the magnetic and structural properties of the system Pb1?x Sr x Fe12O19 (x=0.1,0.3,0.5,0.7 and 0.9) are reported. The samples were prepared by the traditional ceramic method. All the compounds are isostructural with the strontium hexaferrite (SrFe12O19). X-ray powder diffraction was used to carry out the quantitative analysis of phases and to determinate the crystallographic parameters. It was found that the compound consists of only one phase and that the coercivity, remanence and saturation increased with the strontium content. The initial susceptibility was also obtained and results are discussed in terms of the magnetization mechanisms produced by the effect of the substitution on the hexaferrite. Furthermore, Néel temperature measurements indicate a strengthening of the exchange interactions with increasing strontium content.  相似文献   

15.
The sol–gel method is used to prepared hexaferrite using d-Fructose as a fuel. The effect of sintering temperature on the microstructure of SrFe12O19 ceramics is analyzed. The observed XRD results indicate a well-formed crystalline phase of dense hexagonal SrFe12O19 ceramics. From this analysis, no secondary phases are identified. The microstructure of the sintered single phase M-type ferrites ceramics displays a hexagonal-platelet like morphology. Sintering temperature can markedly affect the grains in sintered ferrite. The sintered product is shown to be dense microstructure with relatively small grains. The maximum sintered density 95 % was obtained at lower temperature of 1,150 °C. In addition, saturation magnetization (50.43 emu/g) and the coercivity (Hc) 5,594.53 Gauss were observed.  相似文献   

16.
ZnTa2O6 ceramics with various amount of Al2O3 additive were synthesized by a conventional mixed-oxide route. The grain growth of ZnTa2O6 ceramics was accelerated with Al2O3 additive. However, excessive addition (>1.0 wt%) of Al2O3 leaded to abnormal grain growth. With Al2O3 addition, the Al2O3 additive did not solubilized into ZnTa2O6 structure but resulted in forming the second phase. The Al2O3 addition resulted in the lower sintering temperature of ZnTa2O6 ceramics and improved microwave dielectric properties. The dielectric constant (εr) of the samples did not change much and ranged from 32.41 to 34.33 with different amount of Al2O3 addition. The optimized quality factor (Q × f) was higher than 70,000 GHz as a result of the denser ceramics. The temperature coefficient of resonant frequency (τ f ) of the doped ZnTa2O6 ceramics could be optimized to near-zero.  相似文献   

17.
A low temperature co-fired ceramic (LTCC) was fabricated at 910 °C /2 h from the powder mixture of Li2Zn3Ti4O12, TiO2 and a B2O3–La2O3–MgO–TiO2 glass (BLMT), and the influence of TiO2 on microstructure and dielectric properties of the composite was investigated in the composition range (wt%) of 20BLMT–(80???x)Li2Zn3Ti4O12–xTiO2 (x?=?0, 2.5, 5, 7.5, 9 and 10). The results showed that all samples consisted of Li2Zn3Ti4O12, TiO2, LaBO3 and LaMgB5O10 phase. And LaBO3, LaMgB5O10 and a small amounts of TiO2 were crystallized from BLMT glass during sintering process. As x increases, dielectric constant and temperature coefficient of resonance frequency of the composites demonstrated gradually increase, whereas the quality factor of the sample of x?=?0 wt% was about 41,500 GHz and the ones maintained stable at a high level of 49,000–51,000 GHz for other samples. The composite with x?=?9 wt% had an optimal microwave dielectric properties with the dielectric constant of 20.2, quality factor of 50,000 GHz and temperature coefficient of resonant frequency of ??0.33 ppm/°C.  相似文献   

18.
Nanosized strontium hexaferrite (SrFe12O19) has been synthesized by citrate, urea, oxalic, and glycine precursor via a sol-gel route with poly(methyl methacrylate) (PMMA) as a templating agent. Crystal structure, morphology, and magnetic properties of as-synthesized nanoparticles were characterized by XRD, SEM, FT-IR, and VSM techniques. The formation of strontium hexaferrite and its crystallite size in presence of different fuels were compared. The influence of different fuels was reflected on the phase purity, morphology of the final powders as well as the magnetic properties. Magnetic measurements revealed that samples prepared by citric acid and glycine as fuel have high specific saturation magnetization and moderate coercivity, while urea and oxalic acid fuels resulted in low phase purity, and thus inferior magnetic properties.  相似文献   

19.
Glasses with nominal compositions 11SrO · 5.5Fe2O3 · 4.5Al2O3 · 4B2O3 (1) and 15SrO · 5.5Fe2O3 · 4.5Al2O3 · 4B2O3 (2) were prepared by rapidly quenching oxide melts between counterrotating steel rollers. The glasses were then heat-treated in the range 650–950°C to produce glass-ceramic samples. The samples were characterized by X-ray diffraction, electron microscopy, and magnetic measurements. The phase composition of the glass-ceramics was determined, and their microstructure and magnetic properties were studied. The annealing temperature was shown to have a strong effect on the coercivity of the materials, which reaches 650 and 570 kA/m for compositions 1 and 2, respectively.  相似文献   

20.
SrFe12O19 hexaferrite thick films were prepared by tape casting method followed by a two-step sintering process. X-Ray diffractometer, field emission scanning electron microscope and vibrating sample magnetometer were used to investigate the microstructure and magnetic properties of samples. Results show that high density films with nanocrystalline grains, high crystallographic c-axis orientation of crystals perpendicular to the film plane with high squareness (M r/M s = 0.93) and moderate coercivity (H c = 3,750 Oe) can be obtained with two-step sintering. Grains growth is controllable by this sintering method. The average grain size of the films strongly depends on final stage of sintering and quality of starting powders and ranging between 0.5 and 10 μm. The thick films with starting powders from coprecipitation method are denser with smaller grain size rather than those with starting powders from solid state reactions. This work reveals the feasibility of fabrication of thick hexaferrite films with a simple and effective method for next generation of self-biased planar microwave devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号