首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
采用CO2气体保护焊法对16mm厚的热轧态D级船用钢板进行焊接,通过拉伸、冲击和金相检验等试验方法对焊接接头的力学性能与显微组织进行了研究。结果表明:采用YCJ501-1焊材对D级船用钢板进行焊接时,接头具有较高的抗拉强度和较好的低温冲击韧性;焊缝组织主要为针状铁素体、先共析铁素体和少量粒状贝氏体;热影响区组织主要为铁素体、珠光体和少量针状铁素体,针状铁素体的存在是接头具有良好力学性能的主要原因。  相似文献   

2.
通过拉伸、冲击、硬度测试和金相检验等方法对S275低合金钢熔化极活性气体保护焊(MAG)焊接接头的力学性能与显微组织进行了研究。结果表明:采用JM一56焊丝对S275低合金钢进行焊接时,接头具有较好的抗剪强度;开45。坡口,拉伸后均断在离焊缝位置较远的母材上,焊接接头抗拉强度满足技术要求。焊缝组织晶内为细小密集的针状铁素体,有极少量珠光体,焊缝局部有魏氏组织;熔合区、过热区为沿晶界析出的块状先共析铁素体和向晶内生长的条状铁素体以及少量的珠光体;正火区组织为细小的铁素体和珠光体;母材组织为铁素体和珠光体,晶粒也比较细小。最后得出S275低合金钢用于转向架焊接构架是可行的。  相似文献   

3.
Quenched and tempered E550 steel was joined using flux-cored arc welding. The effect of cooling rate on microstructure, inclusions and mechanical properties of the weld metal was investigated by optical microscope, scanning electron microscope, transmission electron microscope and mechanical testing. Results show that weld metal microstructures consist of proeutectoid ferrite, ferrite side plate and acicular ferrite. As the cooling rate increased, the volume fraction of proeutectoid ferrite and ferrite side plate decreased, acicular ferrite increased accompanied with refined grain. Furthermore, inclusions of Ti, Mn oxide with diameter below 2.0 μm were found in the weld metal and rapid cooling rate causes distinct Mn-depleted zone between inclusions and matrix. Excellent balance of high strength and toughness is obtained as more acicular ferrite in weld metal with rapid cooling rate. This can attribute to the increased of acicular ferrite with its refined grain and high density dislocation. These findings suggest that the rapid cooling rate can improve the impact toughness and tensile strength of weld metal in local dry underwater welding.  相似文献   

4.
Abstract

The influences of alloying elements on chemical composition of non-metallic inclusions, impact toughness and microstructure in weld metals of high strength low alloy steels have been studied. Results indicated that microstructure had changed from a mixture of acicular ferrite, proeutectoid ferrite, ferrite side plates and microphases to a mixture of acicular ferrite, bainite and microphases due to the addition of Mn and Ti. The impact toughness of weld metal was improved correspondingly. The volume fraction and composition of inclusions both influenced the proportion of acicular ferrite. Mn and Si based oxide globular inclusions located at the boundary of acicular ferrite plates in the weld metal produced using C–Mn–Si–Cu wire. When Mn and Ti were added to welding wires, the inclusions within acicular ferrite plates permitted fewer primary acicular ferrite plates to grow into relatively larger dimensions. Secondary acicular ferrites nucleating on pre-existing ferrite plates refined microstructure effectively.  相似文献   

5.
In the present study, gas metal arc welding and flux cored arc welding were applied on SA516 Gr70 carbon steel material. Two different hybrid passes were applied, wherein flux cored wire and solid wire were applied to root pass and filler pass one by one and vice versa. Besides, two more welds of similar electrode root pass and filler pass of flux cored arc welding and gas metal arc welding were acquired. The comparative analysis was carried out in terms of macrostructure and microstructure examination, tensile testing, hardness variations, and impact testing for these classical welds and hybrid welds. The results reveal that, hybrid welds lead to better impact properties relative to classical welds. Maximum angular distortion of 2.66° was reported with classical weld of gas metal arc welding with solid wire root pass and same filler pass. The maximum impact toughness of 49 J/m3 was reported for flux cored root pass and solid wire filler pass at the weld zone. Maximum tensile strength of 596 MPa was reported for hybrid weld of solid root pass and flux cored filler pass. Microstructures are reported with the presence of different acicular ferrite and grain boundary ferrite. Maximum acicular ferrite of 61% was reported with classical weld of flux cored arc welding.  相似文献   

6.
倪晋尚 《精密成形工程》2023,15(10):177-186
目的 针对汽车高强钢SG1000焊接接头恶化等问题,研究了SG1000激光复合焊接的力学性能。方法 选用等强匹配焊丝MG90-G对高强钢SG1000进行激光复合焊接,对焊接接头进行拉伸和低温冲击韧性试验,并结合扫描和硬度监测等手段对焊缝组织和断口形貌进行分析。结果 由于激光的预热作用,高强钢SG1000激光复合焊接成形件的焊缝美观,焊接过程稳定可靠,焊接熔池深度较大,有效改善了传统焊接的咬边、飞溅、气孔等缺陷。焊缝组织主要由板条马氏体和奥氏体晶粒组成,热影响区的过热区内部板条马氏体和奥氏体晶粒比较粗大,而焊接母材主要为细小的板条马氏体和奥氏体晶粒。焊接拉伸断口主要为细小且较浅的韧窝,且韧窝底部存在第二相粒子及夹杂物,焊接拉伸断口断裂于热影响区且微观形貌为韧性断裂;冲击微观形貌主要由准解理小平面及河流花样组成,且存在一定数量大小不一的韧窝交错分布,焊接冲击断口断裂于热影响区且微观形貌也为韧性断裂。结论 焊缝热影响区的晶粒比非热影响区的晶粒粗大,拉伸和冲击断裂均发生于热影响区;随着激光功率的增大,复合焊接接头的力学性能呈现逐渐增强的趋势;随着焊接速度的增大,复合焊接接头的力学性能呈现先增强后削弱的趋势。高强钢SG1000激光复合焊接最佳工艺参数如下:激光功率为9.5 kW,焊接速度为0.8 m/min,对应屈服强度为1 072 MPa,抗拉强度为1 175 MPa,断裂伸长率为13.5%,冲击断裂吸收的能量为30.8 J、焊缝中心显微硬度为342 HV。  相似文献   

7.
杜宝帅  张忠文  李新梅  邹勇 《材料导报》2011,25(20):80-82,90
采用手工焊条电弧焊和熔化极活性气体保护焊对超细晶Q460钢进行了焊接,分析表征了焊接接头的组织结构、显微硬度和冲击韧性的变化规律。研究结果表明,采用E5515焊条焊接,焊缝金属主要为先共析铁素体、多边形铁素体与少量珠光体。采用ER55-G焊丝,熔化极活性气体保护焊,焊缝金属主要由针状铁素体和少量多边形铁素体组成,焊丝中Ti元素的添加有利于获得针状铁素体组织。采用较小的焊接线能量,超细晶Q460钢热影响区粗晶区组织为粒状贝氏体组织。焊缝金属的显微硬度高于热影响区和母材的显微硬度,热影响区未出现软化现象。冲击试验表明,焊缝金属和热影响区均具有较高的冲击韧性,而且热影响区的韧性高于焊缝金属的韧性。  相似文献   

8.
目的 对Q960E超高强钢的焊接工艺进行研究以获得高强高韧的焊接接头。方法 选择超高强钢Q960E作为母材、FK1000ER120S–G焊丝作为填充材料进行MAG焊,采用改变焊接电流的方式来研究焊接热输入对焊接接头组织和性能的影响。结果 当焊接电流为155~230 A时,均获得了全焊透无明显缺陷的焊缝。随着焊接热输入的增大,焊接接头中各亚区宽度增大,其中焊缝区变化最为显著,在最小热输入条件下焊缝宽度为3.98 mm,在最大热输入条件下焊缝宽度增至5.53 mm。对焊接接头进行组织分析发现,焊缝组织主要为针状铁素体和板条马氏体;完全相变区组织主要为板条马氏体;未完全相变区组织主要为回火马氏体和部分重结晶形成的马氏体。硬度测试表明,在热影响区的回火区发生了软化现象,最低硬度仅为290HV;在完全相变区发生了硬化现象,硬度最大值可达500HV。在不同热输入条件下,焊接接头各亚区硬度变化趋势一致,焊接接头抗拉强度为995~1 076 MPa,拉伸试验均断裂在热影响区,断后伸长率为9.33%~10.21%,断裂时存在颈缩现象,为韧性断裂。随着热输入的增加,粗晶区马氏体板条束宽度增大,未完全相变区...  相似文献   

9.
Mechanical properties of high strength steel welded joints strictly depend on the welding process, the filler material composition and the welding geometry. This study investigates the effects of using cored and solid welding wires and implementing various groove angles on the mechanical performance of weld joints which were fabricated employing the gas metal arc welding process. It was found that weld joints of low alloy, high strength steels using low alloy steel cored welding wires exhibited higher tensile strength than that of low alloy steel solid wire and chromium‐nickel steel bare welding wire when the method of gas metal arc welding is employed. The effect of groove angle on the strength and toughness of V‐groove and double V‐groove butt‐joints was investigated. V‐groove joints, with higher tensile strength than double V‐groove joints in the whole range of groove angles, were superior in toughness for small groove angles, but impact toughness values of both joints were comparable for large angles. The effect of heat input and cooling rate on the weld microstructure and weld strength was also investigated by performing thermal analysis employing the commercial software ANSYS. It was concluded that cooling rate and solidification growth rate determined the microstructure of the weld zone which had great consequences in regard to mechanical properties.  相似文献   

10.
通过屈服强度和冲击韧性测试、组织分析,研究了两种焊接热输入条件下道间温度对10CrNi5MoV钢气体保护焊接头力学性能的影响。结果表明,随着道间温度从40℃提高到300℃,焊接热输入为8 kJ/cm和18 kJ/cm的焊缝金属屈服强度分别从868 MPa和855 MPa单调下降至728 MPa和693 MPa,-50℃冲击韧性分别从70 J和69 J升高至117 J和72 J(道间温度分别为200℃和100℃),然后降低至67 J和43 J;焊缝金属的组织差异是不同道间温度下焊接接头力学性能不同的原因。随着道间温度从40℃提高到300℃,焊缝金属中马氏体组织逐渐消失,粒状贝氏体组织逐渐增多,针状铁素体组织比例先增加再减少,含量最高时的道间温度与冲击韧性峰值水平相一致。  相似文献   

11.
采用10 kJ/cm和15 kJ/cm两种焊接热输入对Q1100超高强钢进行熔化极气体保护焊,研究焊接接头的组织性能及局部腐蚀行为。结果表明:两种热输入焊接接头的焊缝组织主要为针状铁素体和少量的粒状贝氏体,粗晶区组织均为板条贝氏体,细晶区组织均为板条贝氏体和粒状贝氏体,临界相变区组织为多边形铁素体、马奥岛和碳化物的混合组织。两种热输入焊接接头中电荷转移电阻均为母材>热影响区>焊缝区,母材耐蚀性最好,热影响区次之,焊缝区耐蚀性最差。在腐蚀过程中,焊缝区作为阳极最先被腐蚀,当腐蚀一定时间后,腐蚀位置发生改变,阳极腐蚀区域转移到母材区,而焊缝区作为阴极得到保护。热输入为10 kJ/cm时,焊接接头具有更好的低温韧性和耐蚀性,其焊缝和热影响区-40℃冲击功分别为46.5 J和30.2 J。  相似文献   

12.
采用TIG焊接方法对Ti700sr高温钛合金板材进行了焊接,研究了接头的组织形貌、硬度分布及力学性能.结果表明,Ti700sr高温钛合金板材焊接后的接头成形良好,焊缝区组织由粗大的柱状晶及细长的针状α相构成,热影响区组织由细针状α和残余β相构成,热影响区析出相得到有效控制,相边界上无明显硅化物析出;焊接热影响区的硬度相...  相似文献   

13.
为研究590 MPa级高强钢双面双弧工艺得到的焊接接头组织与性能的关系,采用钨极氩弧焊(TIG)与熔化极气体保护焊(MAG)方法获得成型良好的焊接接头,经过拉伸、冲击、弯曲试验及光学显微镜、扫描电镜、EBSD分析,对590 MPa级高强钢双面双弧立焊打底焊与盖面焊焊接接头的组织及性能进行了研究.结果表明:打底焊缝组织主要为贝氏体,盖面焊缝组织以贝氏体与针状铁素体为主;打底焊缝经历过一次热循环后组织得到一定程度的细化;打底焊缝硬度值与盖面焊缝相近,盖面焊缝热影响区最高硬度值高于打底焊缝热影响区最高硬度;2 mm坡口间隙性能较5 mm坡口间隙有较大提高,2 mm坡口间隙断口以韧窝断裂为主,5 mm坡口间隙断口以解理断裂为主.  相似文献   

14.
通过药皮过渡添加B,研究了微量B对440MPa级焊条熔敷金属低温冲击韧性的影响。试验发现,冲击韧性对B含量的变化较敏感,同时当焊缝中Ti含量不同时,B含量的影响也不同。当Ti含量为0.01%~0.04%(w)时,B含量在30×10-6(w)左右时韧性最好;当Ti含量为0.04%~0.07%时,B含量在(40~90)×10-6范围内韧性最好。B含量适中时熔敷金属组织几乎全是均匀细小的针状铁素体,B含量过低组织中出现大量的先共析铁素体,B含量过高则会生成沿原奥氏体晶界分布的粒状贝氏体和上贝氏体。  相似文献   

15.
690 MPa级低合金高强钢焊接接头组织性能   总被引:1,自引:1,他引:0  
为探讨690 MPa级低合金高强钢焊接接头组织与性能的关系,采用手工电弧焊(SMAW)和埋弧焊(SAW)获得成形良好的焊接接头,经过拉伸、冲击、弯曲试验及光学显微镜、扫描电镜和透射电镜分析,对两种焊接方法的接头组织性能进行研究.结果表明:两种焊接方法的焊缝组织主要为板条状贝氏体和少量针状铁素体,粗晶区为粗大贝氏体和少量马氏体;焊缝中含有大量分布均匀的微小球形夹杂物;两种焊接方法所得焊接接头都具有较高力学性能,-50℃的冲击断口形貌为韧窝、准解理混合型;埋弧焊焊缝冲击韧性低于手工电弧焊,手工电弧焊熔合线处冲击吸收功小于埋弧焊,但随距熔合线距离增加其值增加更快.显微组织和夹杂物是影响接头性能的主要因素.  相似文献   

16.
The aim of the paper is to evaluate the local tensile and fracture toughness properties of the dissimilar metal weld joints between SA508Gr.3 Cl.1 and SA312 Type 304LN pipe. Weld joints have been prepared by manual gas tungsten arc welding (GTAW) process with conventional V‐groove and automatic hot wire gas tungsten arc welding with narrow gap using different filler wires/electrode such as Inconel 82/Inconel 182 and ER309L/ER308L. The tensile and fracture toughness test specimens have been machined from different regions of dissimilar metal weld such as heat affected zones, fusion lines, buttering layer, weld metal and both base metals. Tensile and fracture toughness tests have been carried out as per the ASTM standard E8 and E1820 respectively. Tensile and fracture toughness results of all the regions of dissimilar metal weld joints have been discussed in this paper. Metallurgical and fracture surface examinations have also been reported to substantiate the tensile and fracture toughness results. Need for the local properties for integrity assessment of the dissimilar metal weld joints has also been brought out.  相似文献   

17.
Microstructure and mechanical characterization of friction stir welded 409M ferritic stainless steel joint were carried out. Single pass welds free of volumetric defects were produced at a welding speed of 50 mm/min and rotation speed of 1000 rpm. Optical microscopy, microhardness testing, transverse tensile, impact and bend tests were performed. The coarse ferrite grains in the base material are changed to very fine grains consisting duplex structure of ferrite and martensite due to the rapid cooling rate and high strain induced by severe plastic deformation caused by frictional stirring. Tensile testing indicates overmatching of the weld metal relative to the base metal. The joints are also exhibited acceptable ductility and impact toughness.  相似文献   

18.
The effect of TiO2 nanoparticles in the electrode coating on the impact toughness of three weld metals prepared by the shielded metal arc welding process was investigated and the main factors affecting the impact toughness were discussed. The microstructure, mechanical properties and fracture surface morphology of the weld metals have been evaluated and the results are compared. When the content of TiO2 nanoparticles in the composition of electrode coating is increased, the morphology of ferrite in the microstructure of columnar zone will change from Widmanstätten ferrite to acicular ferrite. This finally changes to allotriomorphic ferrite when the amount of TiO2 nanoparticles in the electrode coating goes relatively high. Furthermore, the addition of TiO2 nanoparticles is effective in refining the ferrite grain size of the reheated microstructures of weld metals. This effect is attributed to the increased number of nucleation sites on the oxide nanoparticles. The impact toughness of the weld metal was improved by adding TiO2 nanoparticles, especially when a medium TiO2 nanoparticle content was used in the electrode coating. A significant increase in the impact toughness of weld metal was shown to be due to the increased percentage of acicular ferrite and refinement of microstructure.  相似文献   

19.
Effect of chromium content in the range of 0.05–0.91 wt% on the microstructure and mechanical properties of Cr–Ni–Cu low alloy steel weld metal was investigated. All welds were prepared by manual metal arc welding technique in flat position. Microstructure of the welds was examined by optical and scanning electron microscope in both columnar and reheated regions of the weld metal. The results showed increase in acicular ferrite and microphases formed at the expense of primary ferrite and ferrite with second phase with steady refinement of microstructure. According to these microstructural changes, yield and ultimate tensile stresses, Hardness and Charpy V-Notch impact toughness increased, whereas elongation decreased. Increase in Charpy impact value is thought to be due to fine dispersed spheroidized dark microphases at high chromium contents.  相似文献   

20.
Medium Mn steel was metal inert gas(MIG)welded with NiCrMo-3 and 307Si filler wires.The effect of filler wires on the microstructure and mechanical properties of joint was investigated,and the carbide precipitates were contrastively discussed.The results revealed that the microstructure of weld metal,heat-affected zone and base metal are austenite.Obvious grain coarsening occurred in the heat-affected zone(HAZ),and the maximum grain size grew up to 160 pm.In HAZ,C and Cr segregated at grain boundaries,the carbides was identified as Cr7C3.The dispersive(Nb,Mo)C phase was also found in weld metal with NiCrMo-3 filler wire.All the welded joints failed in HAZ during tensile tests.The tensile strength of welded joint with NiCrMo-3 filler wire was 675 MPa,which is much higher than that with 307Si filler wire.In comparison to base metal,higher microhardness and lower impact toughness were obtained in HAZ for these two welded joints,which was attributed to the precipitation of Cr7C3 phase and grain coarsening.The impact toughness around the fusion line is the worst for these two welded joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号