首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Due to strong nonlinear variation of supercritical CO2 specific heat capacity with temperature, pinch point would occur in water-cooled CO2 gas cooler, which has great impacts on the heat transfer characteristics of gas cooler and overall system performance. Pinch point analysis was conducted for CO2 gas cooler in the present study. The effects of refrigerant pressure, mass flow ratio (mw/mc), inlet water temperature and heat transfer area on pinch point location, approach temperature difference and heat transfer rate were analyzed in detail. Based on the analysis of pinch point location in CO2 gas cooler, the critical flow ratios were proposed to effectively control the approach temperature difference. Furthermore, the actual conductance of gas cooler was calculated and compared with that estimated by LMTD method. The results showed that CO2 gas cooler may be undersized by as much as a factor of 30–60% for different pressures if LMTD method is used. However, the UA value evaluated by LMTD method also may be overestimated under high refrigerant pressures when the approach temperature difference tends to be zero. Results of the present study are helpful to practical designs of CO2 gas cooler and heat pump water heaters.  相似文献   

2.
Blends of CO2 with ten low-global warming potential (GWP) working fluids are evaluated for use in a heat pump water heater. The effects that the discharge pressure, component ratio, hot-water outlet temperature and chilled water inlet temperature have on the coefficient of performance (COP) of heat pump are analyzed when the pinch point of the heat exchange is considered. It is found that temperature glide of zeotropic mixture has a good thermal match with the temperature change of water as two pinch points appear in the gas cooler/condenser or evaporator. The good thermal match in the heat exchangers promotes the system COP. Addition of low-GWP working fluids to pure CO2 can reduce the high-side pressure. The results show that CO2/R41 and CO2/R32 are suitable candidates for heat pump water heaters because of their high COP and low high-side pressure in comparison with those of a pure CO2 cycle.  相似文献   

3.
介绍以毛细管为节流装置跨临界CO2热泵热水试验系统。实验研究了不同气冷器进水温度下系统的COP及其变化、气冷器沿管长水温温升梯度变化。分析了不同环境温度下制冷剂充注量对系统高压侧压力的影响。可以得出:以毛细管做节流装置也可以得到较高的COP;气冷器水温在高温CO2进口段温升幅度最大;系统对环境温度的变化很敏感,环境温度较低时要想得到合适的高压侧压力,制冷剂的充注量要比环境温度高时多。  相似文献   

4.
The heat transfer coefficient and pressure drop during gas cooling process of CO2 (R744) in a horizontal tube were investigated experimentally. The experiments are conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and a gas cooler (test section). The water loop consists of a variable speed pump, an isothermal tank, and a flow meter. The refrigerant, circulated by the variable-speed pump, condenses in the inner tube while water flows in the annulus. The gas cooler of tube diameter is 6000 mm in length, and it is divided into 12 subsections.The pressure drop of CO2 in the gas cooler shows a relatively good agreement with those predicted by Blasius's correlation. The local heat transfer coefficient of CO2 agrees well with the correlation by Bringer–Smith. However, at the region near Pseudo-critical temperature, the experiments indicate higher values than the Bringer–Smith correlation. Based on the experimental data presented in this paper, a new correlation to predict the heat transfer coefficient of supercritical CO2 during in-tube cooling has been developed. The majority of the experimental values are within 18% of the values predicted by the new correlation.  相似文献   

5.
A prototype transcritical CO2 heat pump was constructed for heating water to temperatures greater than 65°C while providing refrigeration at less than 2°C. The heating capacity was 115 kW at an evaporation temperature of +0.3°C and a hot water temperature of 77.5°C, with a heating coefficient of performance (COP) of 3.4. Performance data is presented for each of the compressor, the gas cooler, and the recuperator as well as for the overall heat pump system. Equipment performance data was incorporated into a computer model to enable parametric investigations of heat pump performance. Model predictions showed that the hot water temperature could be increased from 65 to 120°C with a relatively small reduction in heating capacity and heating COP of 33 and 21%, respectively. Model predictions also highlight the potential for significant capacity improvements by eliminating the recuperator in favour of a larger gas cooler.  相似文献   

6.
系统高压的优化与控制在提升跨临界CO_2系统效率方面至关重要。在CO_2热泵热水系统中,传统的高压控制方程中仅考虑了气体冷却器侧的出口温度而忽略实际应用中对出水温度的要求和温度夹点,导致系统性能大大降低。本文针对温度夹点和进出水温等约束的影响,建立了有约束的气冷器模型,并对系统高压进行了优化。采用实验设计以及统计学方法确定影响最优高压的主要因素,通过最小二乘法回归出最优高压控制方程。使用该高压控制方程的系统平均COP损失1.8%,最大COP损失8.7%,可以更好地满足实际应用。  相似文献   

7.
对跨临界CO2水-水热泵多种工况的循环性能进行试验研究,获得一系列试验数据。试验结果表明,1)跨临界CO2热泵循环在高温热泵领域可得到高于常规热泵系统的制热系数;2)降低气体冷却器出口温度,提高蒸发温度,选择最佳的高压侧压力可有效提高系统的制热系数。最后根据试验结果为今后CO2热泵流程设计提出一些建议。  相似文献   

8.
This paper presents the development of a transcritical CO2 heat pump water heating system model incorporating analytical heat exchanger models and an empirical compressor model. This study investigated the effects of a suction line heat exchanger (SLHX) and once-through versus recirculating water heating schemes. The once-through systems outperformed the recirculating systems by 10% for the system without an SLHX and 15% with an SLHX. However, a gas cooler twice as large is required. The SLHX was shown to benefit system performance at higher evaporator temperatures with improvements of 16.5% for the once-through and 4% for the recirculating systems. This study can be used to improve the design of microchannel based transcritical CO2 heat pumps; evaluate the impact of varying water inlet temperature, desired outlet temperature and evaporation temperature on system performance; and quantify the effect of differential diurnal electricity rates on system operating costs for these different operation schemes.  相似文献   

9.
建立了跨临界二氧化碳热泵热水系统中的气体冷却器模型,对管内二氧化碳和水侧的流动和传热进行了数值仿真;并运用该模型分析了系统运行时各有关参数对换热器性能的影响,并结合最优排气压力,研究使系统高效运行的方法,为气冷器的优化设计提供了基础。  相似文献   

10.
An experimental and analytical study on the performance of a compact, microchannel water- carbon dioxide (CO2) gas cooler was conducted. The gas cooler design under investigation used an array of serpentine refrigerant microchannel tubes wrapped around water passages containing offset strip fins, resulting in a generally counterflow configuration between the two fluids. Part I of this two-part paper addresses the experimental aspects. Data were obtained using an experimental heat pump facility at varying inlet conditions for three gas coolers of the same design, but different sizes. Measured heating capacity for the three gas coolers ranged from 1.5 to 6.5 kW. The results of this study are used in the companion paper (Part II) to develop a predictive heat exchanger model to optimize gas cooler design over a wide range of operating conditions, eliminating the need for expensive prototype development and testing.  相似文献   

11.
CO2是具有很大潜力的天然替代工质之一,CO2跨临界循环放热过程中具有较大温度滑移,与水侧温升过程相匹配,因此适合用于热泵热水器系统。国内外学者提出了许多提高跨临界CO2循环效率的方法,其中包括引入回热器、喷射器等设备,从不同角度对比分析在常规跨临界CO2热泵系统中引入回热器、喷射器后系统的性能变化。本文在前人工作的基础上,建立相关热力学计算模型,并进一步对四种不同形式的跨临界CO2热泵系统(常规跨临界CO2热泵系统(TCHS)、带回热器的跨临界CO2热泵系统(TCHSI)、带喷射器的跨临界CO2热泵系统(TCHSE)及带喷射器与回热器的跨临界CO2热泵系统(TCHSEI))的性能进行研究,对比分析排气压力一定的情况下四种循环的热力性能;从最优排气压力的角度出发,分析对比不同系统中气冷器出口温度变化对系统最优排气压力和制热系数的影响,以及喷射器等熵效率对系统性能的影响。以上研究为CO2压缩式热泵系统的实用化进展奠定良好的理论基础。  相似文献   

12.
针对自然工质CO2热泵热水器中套管式气体冷却器进行理论分析与实验研究。选取不同的换热关联式,分析管径和流量对CO2侧和水侧换热的影响,理论分析CO2和水的温度匹配情况,设计套管式气体冷却器并进行实验研究,实验结果表明所进行的理论分析在误差允许范围内,满足设计要求,理论和实验结果对于CO2热泵热水器的产业化应用起到了很好的技术支持作用。  相似文献   

13.
In this paper, the effect of intermediate water temperature on the performance of a combined R134a and transcritical CO2 heat pump was studied theoretically and experimentally. The mathematical model was first validated using experimental data and then applied to analyze the performance of the combined system. The results show that there exists an optimal intermediate water temperature (water inlet temperature at the gas cooler) at which the combined system has the highest COP. This optimal intermediate water temperature varies with the ambient air temperature. Furthermore, the effect of intermediate water temperature on individual R134a and transcritical CO2 subsystems was investigated. The results show that both heating capacity and power consumption in the R134a subsystem increase as the intermediate water temperature increases. However, power consumption in the CO2 system drops slightly, and heating capacity reaches an optimal value as the intermediate water temperature increases from 15 to 32 °C under ambient air temperatures ranging from −20 to 7 °C.  相似文献   

14.
本文设计了一台CO_2套管式气冷器并对其进行了换热特性的实验研究。该气冷器采用逆流三重套管,CO_2在内管流动,冷却水在内外管间流动。实验研究了不同CO_2质量流量、入口压力和冷却水温度对传热系数、换热量和换热器效能系数的影响。实验结果表明,随着CO_2质量流量的增加,传热系数和换热量均呈先增后减的趋势,换热器效能系数逐渐减小;CO_2质量流量不变时,传热系数、换热量和换热器效能系数均随气冷器CO_2入口压力的升高而逐渐增大;随着冷却水温度的升高,传热系数、换热量和换热器效能系数均逐渐减小。  相似文献   

15.
A steady state simulation model has been developed to evaluate the system performance of a transcritical carbon dioxide heat pump for simultaneous heating and cooling. The simulated results are found to be in reasonable agreement with experimental results reported in the literature. Such a system is suitable, for example, in dairy plants where simultaneous cooling at 4 °C and heating at 73 °C are required. The optimal COP was found to be a function of the compressor speed, the coolant inlet temperature to the evaporator and inlet temperature of the fluid to be heated in the gas cooler and compressor discharge pressure. An optimizing study for the best allocation of the fixed total heat exchanger inventory between the evaporator and the gas cooler based on the heat exchanger area has been carried out. Effect of heat transfer in the heat exchangers on system performance has been presented as well. Finally, a novel nomogram has been developed and it is expected to offer useful guidelines for system design and its optimisation.  相似文献   

16.
在制冷空调产品及热泵热水机国家标准规定的名义工况下,比较CO2跨临界循环与R22,R410A和R404A单级蒸气压缩循环的理论循环效率。结果表明:在空调制冷名义工况下,R22理论循环效率最高,CO2的理论循环效率只有R22的50%~60%;在热泵热水机名义工况下,CO2的理论循环效率最高,可以达到R22的145%;CO2跨临界循环受冷却器压力及出口温度2个方面的影响,适当降低CO2冷却器出口温度可改善循环效率,应用CO2制冷剂需要通过改善循环和优化控制提高系统的能效。  相似文献   

17.
A theoretical and experimental study has been carried out for a residential brine-to-water CO2 heat pump system for combined space heating and hot water heating. A 6.5 kW prototype heat pump unit was constructed and extensively tested in order to document the performance and to study component and system behaviour over a wide range of operating conditions. The CO2 heat pump was equipped with a unique counter-flow tripartite gas cooler for preheating of domestic hot water (DHW), low-temperature space heating and reheating of DHW.

The CO2 heat pump was tested in three different modes: space heating only, DHW heating only and simultaneous space heating and DHW heating. The heat pump unit gave off heat to a floor heating system at supply/return temperatures of 33/28, 35/30 or 40/35 °C, and the set-point temperature for the DHW was 60, 70 or 80 °C. Most tests were carried out at an evaporation temperature of −5 °C, and the average city water temperature was 6.5 °C. The experimental results proved that a brine-to-water CO2 heat pump system may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pump systems as long as: (1) the heating demand for hot water production constitutes at least 25% of the total annual heating demand of the residence, (2) the return temperature in the space heating system is about 30 °C or lower, (3) the city water temperature is about 10 °C or lower and (4) the exergy losses in the DHW tank are small.  相似文献   


18.
A novel CO2 heat pump system was provided for use in fuel cell vehicles, when considering the heat exchanger arrangements. This cycle which had an inverter-controlled, electricity-driven compressor was applied to the automotive heat pump system for both cooling and heating. The cooling and heating loops consisted of a semi-hermetic compressor, supercritical pressure microchannel heat exchangers (a gas cooler and a cabin heater), a microchannel evaporator, an internal heat exchanger, an expansion valve and an accumulator. The performance characteristics of the CO2 heat pump system for fuel cell vehicles were analyzed by experiments. Results for steady and transient state performance were provided for various operating conditions. Furthermore, experiments to examine the arrangements of a radiator and an outdoor heat exchanger were carried out by changing their positions for both cooling and heating conditions. The arrangements of the radiator and the outdoor heat exchanger were tested to quantify cooling/heating effectiveness and mutual interference. The improvement of heating capacity and coefficient of performance (COP) of the CO2 heat pump system was up to 54% and 22%, respectively, when using preheated air through the radiator instead of cold ambient air. However, the cooling capacity quite decreased by 40–60% and the COP fairly decreased by 43–65%, for the new radiator-front arrangement.  相似文献   

19.
Thermodynamic (energy and exergy) analyses and optimization studies of two-stage transcritical N2O and CO2 cycles, incorporating compressor intercooling, are presented based on cycle simulation employing simultaneous optimization of intercooler pressure and gas cooler pressure. Further, performance comparisons with the basic single-stage cycles are also presented. The N2O cycle exhibits higher cooling COP, lower optimum gas cooler pressure and discharge temperature and higher second law efficiency as compared to an equivalent CO2 cycle. However, two-stage compression with intercooling yields lesser COP improvement for N2O compared to CO2. Based on the cycle simulations, correlations of optimum gas cooler pressure and inter-stage pressure in terms of gas cooler exit temperature and evaporator temperature are obtained. This is expected to be of help as a guideline in optimal design and operation of such systems.  相似文献   

20.
王涛  马家豪  金听祥 《包装工程》2024,45(5):254-262
目的 对跨临界CO2热泵驱动的闭式干燥系统展开理论研究,得到CO2闭式热泵中最优工况的计算方法和原理。方法 通过建立CO2循环与空气循环热力学耦合的数学模型,计算干燥循环中空气的温度、焓值、相对湿度、含湿量,以及跨临界CO2热泵系统中工质的温度、压力、焓值等参数。通过调整冷凝干燥后空气温度,以热泵烘干系统的COP为评价依据,探究空气循环与CO2热泵循环的耦合机理。结果 获得了CO2循环系统最优排气压力随闭式空气循环系统在不同工况下的变化规律,并基于所建立的计算程序,获得了典型工艺参数下的热泵系统的热力学参数,为关键设备(风机、换热器、压缩机等)选型及系统控制方法提供了理论依据。结论 研究表明,在CO2热泵冷却器出口状态为临界状态时,系统的COP达到最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号